(12) United States Patent Bisaiji et al. ## (54) EXHAUST PURIFICATION SYSTEM OF INTERNAL COMBUSTION ENGINE (71) Applicants: Yuki Bisaiji, Mishima (JP); Kohei Yoshida, Gotemba (JP); Mikio Inoue, Susono (JP) (72) Inventors: Yuki Bisaiji, Mishima (JP); Kohei Yoshida, Gotemba (JP); Mikio Inoue, Susono (JP) Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA, Toyota (JP) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 356 days. Appl. No.: 13/934,080 (22)Filed: Jul. 2, 2013 (65)**Prior Publication Data** > US 2014/0007557 A1 Jan. 9, 2014 #### Related U.S. Application Data - (63) Continuation of application No. 13/202,733, filed as application No. PCT/JP2010/054740 on Mar. 15, 2010, now Pat. No. 8,683,784. - (51) **Int. Cl.** F01N 3/20 (2006.01)F01N 3/10 (2006.01)(Continued) - (52) U.S. Cl. CPC F01N 3/10 (2013.01); B01D 53/9422 (2013.01); F01N 3/0814 (2013.01); F01N 3/0842 (2013.01); F01N 3/208 (2013.01); F01N 13/009 (2014.06); F02D 41/0275 (2013.01); (Continued) US 9,458,745 B2 (10) Patent No.: (45) Date of Patent: Oct. 4, 2016 Field of Classification Search CPC F01N 3/0814; F01N 2510/0684; F02D 41/0275; B01D 53/9422 See application file for complete search history. (56)References Cited U.S. PATENT DOCUMENTS 5,052,178 A 10/1991 Clerc et al. 5,057,483 A 10/1991 Wan (Continued) FOREIGN PATENT DOCUMENTS 101454081 A 6/2009 CNCN 101600860 A 12/2009 (Continued) OTHER PUBLICATIONS Office Action dated Oct. 24, 2013 issued in U.S. Appl. No. 13/255,710. (Continued) Primary Examiner — Jonathan Matthias (74) Attorney, Agent, or Firm — Oliff PLC #### (57)ABSTRACT A method of purifying NO_X contained in exhaust gas, the method including a first NO_X purification method and a second NO_X purification method, wherein the first NO_X purification method and the second NO_X purification method include injecting hydrocarbons into an exhaust gas passage at predetermined feed intervals, wherein in the first method, the injected hydrocarbons are partially oxidized and an air-fuel ratio flowing into an exhaust purification catalyst is lean, and in the second method, the injection of the hydrocarbons occurs at intervals longer than the predetermined feed intervals in the first method, and an air-fuel ratio is switched from lean to rich. ## 19 Claims, 17 Drawing Sheets # US 9,458,745 B2 Page 2 | (51) Int. Cl. | 8,679,410 B2 | 3/2014 Umemoto et al. | |--|---|---| | | 8,689,543 B2 | 4/2014 | | B01D 53/94 (2006.01) | 8,695,325 B2 | 4/2014 Bisaiji et al. | | F01N 3/08 (2006.01) | 2001/0052232 A1 | 12/2001 Hoffmann et al. | | $F02D \ 41/14 $ (2006.01) | 2002/0029564 A1 | 3/2002 Roth et al. | | $F01N \ 13/00 $ (2010.01) | 2002/0053202 A1 | 5/2002 Akama et al. | | $F02B \ 37/00 $ (2006.01) | 2003/0010020 A1
2003/0040432 A1 | 1/2003 Taga et al.
2/2003 Beall et al. | | $F02D \ 41/02 $ (2006.01) | 2003/0040432 A1
2003/0101713 A1 | 6/2003 Dalla Betta et al. | | $F02D \ 41/40 $ (2006.01) | 2004/0045285 A1 | 3/2004 Penetrante et al. | | (52) U.S. Cl. | 2004/0050037 A1 | 3/2004 Betta et al. | | CPC F02D41/1446 (2013.01); <i>B01D 53/944</i> | 2004/0055285 A1 | 3/2004 Rohr et al. | | (2013.01); <i>B01D 53/9477</i> (2013.01); <i>B01D</i> | 2004/0154288 A1
2004/0175305 A1 | 8/2004 Okada et al.
9/2004 Nakanishi et al. | | 2251/208 (2013.01); B01D 2255/104 | 2004/01/3303 A1
2004/0187477 A1 | 9/2004 Okugawa et al. | | (2013.01); <i>B01D</i> 2255/1021 (2013.01); <i>B01D</i> | 2005/0135977 A1 | 6/2005 Park et al. | | | 2005/0147541 A1 | 7/2005 Ajisaka et al. | | 2255/1023 (2013.01); B01D 2255/1025 | 2006/0053778 A1 | 3/2006 Asanuma et al. | | (2013.01); B01D 2255/1028 (2013.01); B01D | 2006/0107657 A1 | 5/2006 Bernler et al.
7/2006 Bandl-Konrad et al. | | 2255/2022 (2013.01); B01D 2255/2027 | 2006/0153761 A1
2006/0286012 A1 | 12/2006 Socha et al. | | (2013.01); B01D 2255/2042 (2013.01); B01D | 2007/0016357 A1 | 1/2007 Nakagawa et al. | | 2255/2045 (2013.01); B01D 2255/2063 | 2007/0028601 A1 | 2/2007 Duvinage et al. | | (2013.01); <i>B01D</i> 2255/20738 (2013.01); <i>B01D</i> | 2007/0059223 A1 | 3/2007 Golunski et al. | | 2255/20761 (2013.01); B01D 2255/9025 | 2007/0089403 A1 | 4/2007 Pfeifer et al. | | (2013.01); F01N 3/106 (2013.01); F01N | 2007/0125073 A1
2007/0151232 A1 | 6/2007 Reuter et al.
7/2007 Dalla Betta et al. | | 2430/06 (2013.01); F01N 2430/085 (2013.01); | 2008/0022662 A1 | 1/2007 Bana Betta et al. | | F01N 2510/0684 (2013.01); F01N 2560/06 | 2008/0053073 A1 | 3/2008 Kalyanaraman et al. | | (2013.01); F01N 2570/14 (2013.01); F01N | 2008/0102010 A1 | 5/2008 Bruck et al. | | 2610/03 (2013.01); F01N 2900/1602 | 2008/0120963 A1 | 5/2008 Morita et al. | | (2013.01); F01N 2900/1612 (2013.01); F01N | 2008/0148711 A1
2008/0154476 A1 | 6/2008 Takubo
6/2008 Takubo | | 2900/1626 (2013.01); F02B 37/00 (2013.01); | 2008/0196398 A1 | 8/2008 Yan | | F02D 41/0245 (2013.01); F02D 41/405 | 2008/0223020 A1 | 9/2008 Yoshida et al. | | (2013.01); F02D 2200/0802 (2013.01); Y02T | 2008/0276602 A1 | 11/2008 McCabe et al. | | 10/24 (2013.01) | 2009/0000277 A1 | 1/2009 Yoshida et al. | | | 2009/0049824 A1
2009/0049825 A1 | 2/2009 Kojima et al.
2/2009 Ohashi | | (56) References Cited | 2009/0049826 A1 | 2/2009 Toshioka et al. | | U.S. PATENT DOCUMENTS | 2009/0077948 A1 | 3/2009 Mondori et al. | | O.S. TATENT DOCUMENTS | 2009/0084091 A1 | 4/2009 Tsujimoto et al. | | | 2000/01/01/21 4/ | | | 5,075,274 A 12/1991 Kiyohide et al. | 2009/0118121 A1 | 5/2009 Sarai | | 5,402,641 A 4/1995 Katoh et al. | 2009/0120072 A1 | 5/2009 Sarai
5/2009 Dalla Betta et al. | | 5,402,641 A 4/1995 Katoh et al.
5,882,607 A 3/1999 Miyadera et al. | | 5/2009 Sarai | | 5,402,641 A 4/1995 Katoh et al.
5,882,607 A 3/1999 Miyadera et al.
6,109,024 A 8/2000 Kinugasa et al. | 2009/0120072 A1
2009/0151332 A1
2009/0191108 A1
2009/0196811 A1 | 5/2009 Sarai
5/2009 Dalla Betta et al.
6/2009 Toshioka et al.
7/2009 Blanchard et al.
8/2009 Yamashita et al. | | 5,402,641 A 4/1995 Katoh et al.
5,882,607 A 3/1999 Miyadera et al.
6,109,024 A 8/2000 Kinugasa et al.
6,327,851 B1 12/2001 Bouchez et al. | 2009/0120072 A1
2009/0151332 A1
2009/0191108 A1
2009/0196811 A1
2009/0229251 A1 | 5/2009 Sarai
5/2009 Dalla Betta et al.
6/2009 Toshioka et al.
7/2009 Blanchard et al.
8/2009 Yamashita et al.
9/2009 Kadowaki | | 5,402,641 A 4/1995 Katoh et al.
5,882,607 A 3/1999 Miyadera et al.
6,109,024 A 8/2000 Kinugasa et al. | 2009/0120072 A1
2009/0151332 A1
2009/0191108 A1
2009/0196811 A1
2009/0229251 A1
2009/0249768 A1 | 5/2009 Sarai
5/2009 Dalla Betta et al.
6/2009 Toshioka et al.
7/2009 Blanchard et al.
8/2009 Yamashita et al.
9/2009 Kadowaki
10/2009 Asanuma et al. | | 5,402,641 A 4/1995 Katoh et al.
5,882,607 A 3/1999 Miyadera et al.
6,109,024 A 8/2000 Kinugasa et al.
6,327,851 B1 12/2001 Bouchez et al.
6,413,483 B1 7/2002 Brisley et al.
6,477,834 B1 11/2002 Asanuma et al.
6,667,018 B2 12/2003 Noda et al. | 2009/0120072 A1
2009/0151332 A1
2009/0191108 A1
2009/0196811 A1
2009/0229251 A1
2009/0249768 A1
2009/0266057 A1 | 5/2009 Sarai
5/2009 Dalla Betta et al.
6/2009 Toshioka et al.
7/2009 Blanchard et al.
8/2009 Yamashita et al.
9/2009 Kadowaki | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851
B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,477,834 B1 11/2002 Asanuma et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. | 2009/0120072 A1
2009/0151332 A1
2009/0191108 A1
2009/0196811 A1
2009/0229251 A1
2009/0249768 A1 | 5/2009 Sarai
5/2009 Dalla Betta et al.
6/2009 Toshioka et al.
7/2009 Blanchard et al.
8/2009 Yamashita et al.
9/2009 Kadowaki
10/2009 Asanuma et al.
10/2009 Tsujimoto et al. | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,477,834 B1 11/2002 Asanuma et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. | 2009/0120072 A1
2009/0151332 A1
2009/0191108 A1
2009/0196811 A1
2009/029251 A1
2009/0249768 A1
2009/0266057 A1
2009/0282809 A1
2009/028393 A1
2009/0313970 A1 | 5/2009 Sarai
5/2009 Dalla Betta et al.
6/2009 Toshioka et al.
7/2009 Blanchard et al.
8/2009 Yamashita et al.
9/2009 Kadowaki
10/2009 Asanuma et al.
10/2009 Toshioka
11/2009 Matsuno et al.
12/2009 Iida | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,477,834 B1 11/2002 Asanuma et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida | 2009/0120072 A1
2009/0151332 A1
2009/0191108 A1
2009/0196811 A1
2009/0229251 A1
2009/0249768 A1
2009/0266057 A1
2009/0282809 A1
2009/028393 A1
2009/0313970 A1
2010/0005873 A1 | 5/2009 Sarai
5/2009 Dalla Betta et al.
6/2009 Toshioka et al.
7/2009 Blanchard et al.
8/2009 Yamashita et al.
9/2009 Kadowaki
10/2009 Tsujimoto et al.
11/2009 Toshioka
11/2009 Matsuno et al.
12/2009 lida
1/2010 Katoh et al. | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,477,834 B1 11/2002 Asanuma et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida 6,983,589 B2 1/2006 Lewis et al. 7,063,642 B1 6/2006 Hu et al. | 2009/0120072 A1
2009/0151332 A1
2009/0191108 A1
2009/0196811 A1
2009/0229251 A1
2009/0249768 A1
2009/0282809 A1
2009/0288393 A1
2009/03313970 A1
2010/0005873 A1
2010/0055012 A1 | 5/2009 Sarai
5/2009 Dalla Betta et al.
6/2009 Toshioka et al.
7/2009 Blanchard et al.
8/2009 Yamashita et al.
9/2009 Kadowaki
10/2009 Tsujimoto et al.
11/2009 Toshioka
11/2009 Matsuno et al.
12/2009 Iida
1/2010 Katoh et al.
3/2010 Grisstede et al. | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,477,834 B1 11/2002 Asanuma et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida 6,983,589 B2 1/2006 Lewis et al. 7,063,642 B1 6/2006 Hu et al. 7,073,325 B2 7/2006 Nakatani et al. | 2009/0120072 A1
2009/0151332 A1
2009/0191108 A1
2009/0196811 A1
2009/0229251 A1
2009/0249768 A1
2009/0282809 A1
2009/0288393 A1
2009/0313970 A1
2010/0005873 A1
2010/0055012 A1
2010/0107613 A1 | 5/2009 Sarai
5/2009 Dalla Betta et al.
6/2009 Toshioka et al.
7/2009 Blanchard et al.
8/2009 Yamashita et al.
9/2009 Kadowaki
10/2009 Asanuma et al.
10/2009 Toshioka
11/2009 Matsuno et al.
12/2009 lida
1/2010 Katoh et al.
3/2010 Grisstede et al.
5/2010 Masuda et al. | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,477,834 B1 11/2002 Asanuma et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida 6,983,589 B2 1/2006 Lewis et al. 7,063,642 B1 6/2006 Hu et al. 7,073,325 B2 7/2006 Nakatani et al. 7,082,753 B2 8/2006 Dalla Betta et al. | 2009/0120072 A1
2009/0151332 A1
2009/0191108 A1
2009/0196811 A1
2009/0229251 A1
2009/0249768 A1
2009/0282809 A1
2009/0283393 A1
2009/038393 A1
2009/038393 A1
2010/0005873 A1
2010/0055012 A1
2010/0107613 A1
2010/0115923 A1 | 5/2009 Sarai 5/2009 Dalla Betta et al. 6/2009 Toshioka et al. 7/2009 Blanchard et al. 8/2009 Yamashita et al. 9/2009 Kadowaki 10/2009 Asanuma et al. 10/2009 Toshioka 11/2009 Matsuno et al. 11/2009 Lida 1/2010 Katoh et al. 3/2010 Grisstede et al. 5/2010 Masuda et al. 5/2010 Tsujimoto et al. | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,477,834 B1 11/2002 Asanuma et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida 6,983,589 B2 1/2006 Lewis et al. 7,063,642 B1 6/2006 Hu et al. 7,073,325 B2 7/2006 Nakatani et al. 7,082,753 B2 8/2006 Dalla Betta et al. 7,111,456 B2 9/2006 Yoshida et al. | 2009/0120072 A1
2009/0151332 A1
2009/0191108 A1
2009/0196811 A1
2009/0229251 A1
2009/0249768 A1
2009/0282809 A1
2009/0283393 A1
2009/0313970 A1
2010/0005873 A1
2010/0055012 A1
2010/017613 A1
2010/015923 A1
2010/0126148 A1 | 5/2009 Sarai 5/2009 Dalla Betta et al. 6/2009 Toshioka et al. 7/2009 Blanchard et al. 8/2009 Yamashita et al. 9/2009 Kadowaki 10/2009 Asanuma et al. 10/2009 Toshioka 11/2009 Matsuno et al. 11/2009 Iida 1/2010 Katoh et al. 3/2010 Grisstede et al. 5/2010 Masuda et al. 5/2010 Tsujimoto et al. | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,477,834 B1 11/2002 Asanuma et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida 6,983,589 B2 1/2006 Lewis et al. 7,063,642 B1 6/2006 Hu et al. 7,073,325 B2 7/2006 Nakatani et al. 7,082,753 B2 8/2006 Dalla Betta et al. 7,111,456 B2 9/2006 Yoshida et al. 7,137,379 B2 11/2006 Sasaki et al. | 2009/0120072 A1
2009/0151332 A1
2009/0191108 A1
2009/0196811 A1
2009/0229251 A1
2009/0249768 A1
2009/0282809 A1
2009/0283393 A1
2009/038393 A1
2009/038393 A1
2010/0005873 A1
2010/0055012 A1
2010/0107613 A1
2010/0115923 A1 | 5/2009 Sarai 5/2009 Dalla Betta et al. 6/2009 Toshioka et al. 7/2009 Blanchard et al. 8/2009 Yamashita et al. 9/2009 Kadowaki 10/2009 Asanuma et al. 11/2009 Toshioka 11/2009 Matsuno et al. 11/2009 Iida 1/2010 Katoh et al. 3/2010 Grisstede et al. 5/2010 Masuda et al. 5/2010 Tsujimoto et al. 5/2010 Morishima et al. 6/2010 Lee | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,477,834 B1 11/2002 Asanuma et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida 6,983,589 B2 1/2006 Lewis et al. 7,063,642 B1 6/2006 Hu et al. 7,073,325 B2 7/2006 Nakatani et al. 7,082,753 B2 8/2006 Dalla Betta et al. 7,111,456 B2 9/2006 Yoshida et al. | 2009/0120072 A1
2009/0151332 A1
2009/0191108 A1
2009/0196811 A1
2009/0229251 A1
2009/0249768 A1
2009/0282809 A1
2009/0288393 A1
2009/0313970 A1
2010/00055012 A1
2010/0107613 A1
2010/0115923 A1
2010/0126148 A1
2010/0132356 A1 | 5/2009 Sarai 5/2009 Dalla Betta et al. 6/2009 Toshioka et al. 7/2009 Blanchard et al. 8/2009 Yamashita et al. 9/2009 Kadowaki 10/2009 Asanuma et al. 10/2009 Toshioka 11/2009 Matsuno et al. 11/2009 Iida 1/2010 Katoh et al. 3/2010 Grisstede et al. 5/2010 Masuda et al. 5/2010 Tsujimoto et al. | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,477,834 B1 11/2002 Asanuma et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida 6,983,589 B2 1/2006 Lewis et al. 7,063,642 B1 6/2006 Hu et al. 7,073,325 B2 7/2006 Nakatani et al. 7,082,753 B2 8/2006 Dalla Betta et al. 7,111,456 B2 9/2006 Yoshida et al. 7,146,800 B2 1/2007 Betta et al. 7,299,625 B2 11/2007 Uchida et al. | 2009/0120072 A1
2009/0151332 A1
2009/0191108 A1
2009/0196811 A1
2009/0229251 A1
2009/0249768 A1
2009/0282809 A1
2009/0288393 A1
2009/0313970 A1
2010/0055012 A1
2010/015413 A1
2010/0154387 A1
2010/0154387 A1
2010/0233051 A1
2010/0233051 A1 | 5/2009 Sarai 5/2009 Dalla Betta et al. 6/2009 Toshioka et al. 7/2009 Blanchard et al. 8/2009 Yamashita et al. 9/2009 Kadowaki 10/2009 Tsujimoto et al. 11/2009 Tsujimoto et al. 11/2009 Iida 11/2010 Katoh et al. 3/2010 Katoh et al. 5/2010 Masuda et al. 5/2010 Morishima et al. 6/2010 Lee 6/2010 Shibata et al. 9/2010 Kumar et al. | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida 6,983,589 B2 1/2006 Lewis et al. 7,063,642 B1 6/2006 Hu et al. 7,073,325 B2 7/2006 Nakatani et al. 7,082,753 B2 8/2006 Dalla Betta et al. 7,111,456 B2 9/2006 Yoshida et al. 7,111,456 B2 11/2006 Sasaki et al. 7,146,800 B2 12/2006 Toshioka et al. 7,299,625 B2 11/2007 Uchida et al.
7,332,135 B2 1/2007 Uchida et al. 7,332,135 B2 1/2007 Uchida et al. | 2009/0120072 A1
2009/0151332 A1
2009/0191108 A1
2009/0196811 A1
2009/0229251 A1
2009/0249768 A1
2009/0282809 A1
2009/0288393 A1
2009/038393 A1
2009/0313970 A1
2010/0005873 A1
2010/0107613 A1
2010/0115923 A1
2010/0126148 A1
2010/0126148 A1
2010/0126387 A1
2010/0126387 A1
2010/0233051 A1
2010/0233051 A1
2010/0233051 A1
2010/0236224 A1
2010/0236224 A1 | 5/2009 Sarai 5/2009 Dalla Betta et al. 6/2009 Toshioka et al. 7/2009 Blanchard et al. 8/2009 Yamashita et al. 9/2009 Kadowaki 10/2009 Toshioka 11/2009 Toshioka 11/2009 Toshioka 11/2009 Iida 1/2010 Katoh et al. 3/2010 Grisstede et al. 5/2010 Masuda et al. 5/2010 Morishima et al. 6/2010 Lee 6/2010 Shibata et al. 9/2010 Grisstede et al. 9/2010 Kumar et al. 9/2010 Tsujimoto et al. | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,477,834 B1 11/2002 Asanuma et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida 6,983,589 B2 1/2006 Lewis et al. 7,063,642 B1 6/2006 Hu et al. 7,073,325 B2 7/2006 Nakatani et al. 7,082,753 B2 8/2006 Voshida et al. 7,111,456 B2 9/2006 Yoshida et al. 7,137,379 B2 11/2006 Sasaki et al. 7,146,800 B2 12/2006 Toshioka et al. 7,299,625 B2 11/2007 Betta et al. 7,332,135 B2 2/2008 Gandhi et al. 7,332,135 B2 2/2008 Gandhi et al. 7,412,823 B2 8/2008 Reuter et al. | 2009/0120072 A1
2009/0151332 A1
2009/0191108 A1
2009/0196811 A1
2009/0229251 A1
2009/0249768 A1
2009/0282809 A1
2009/0288393 A1
2009/0313970 A1
2010/0005873 A1
2010/0107613 A1
2010/015923 A1
2010/015923 A1
2010/015923 A1
2010/0126148 A1
2010/0153356 A1
2010/0233051 A1
2010/0233051 A1
2010/0233051 A1
2010/0233051 A1
2010/0234224 A1
2010/0242459 A1
2011/0041486 A1 | 5/2009 Sarai 5/2009 Toshioka et al. 6/2009 Toshioka et al. 7/2009 Blanchard et al. 8/2009 Yamashita et al. 9/2009 Kadowaki 10/2009 Asanuma et al. 10/2009 Toshioka 11/2009 Toshioka 11/2009 Iida 1/2010 Katoh et al. 3/2010 Grisstede et al. 5/2010 Masuda et al. 5/2010 Morishima et al. 6/2010 Lee 6/2010 Shibata et al. 9/2010 Grisstede et al. 9/2010 Kumar et al. 9/2010 Tsujimoto et al. 1/2010 Lee 1/2010 Shibata et al. 1/2010 Grisstede et al. 1/2010 Shibata et al. 1/2010 Tsujimoto et al. 1/2011 Kato et al. | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida 6,983,589 B2 1/2006 Lewis et al. 7,063,642 B1 6/2006 Hu et al. 7,073,325 B2 7/2006 Nakatani et al. 7,082,753 B2 8/2006 Dalla Betta et al. 7,111,456 B2 9/2006 Yoshida et al. 7,111,456 B2 11/2006 Sasaki et al. 7,146,800 B2 12/2006 Toshioka et al. 7,299,625 B2 11/2007 Uchida et al. 7,332,135 B2 1/2007 Uchida et al. 7,332,135 B2 1/2007 Uchida et al. | 2009/0120072 A1
2009/0151332 A1
2009/0191108 A1
2009/0196811 A1
2009/0229251 A1
2009/0249768 A1
2009/0282809 A1
2009/0283393 A1
2009/038393 A1
2009/038393 A1
2010/0005873 A1
2010/0055012 A1
2010/015012 A1
2010/015012 A1
2010/0154387 A1
2010/0154387 A1
2010/0154387 A1
2010/0233051 A1
2010/0233051 A1
2010/0234249 A1
2011/0041486 A1
2011/0041486 A1 | 5/2009 Sarai 5/2009 Dalla Betta et al. 6/2009 Toshioka et al. 7/2009 Blanchard et al. 8/2009 Yamashita et al. 9/2009 Kadowaki 10/2009 Asanuma et al. 11/2009 Toshioka 11/2009 Ida 11/2009 Ida 11/2010 Katoh et al. 12/2009 Ida 1/2010 Katoh et al. 3/2010 Grisstede et al. 5/2010 Masuda et al. 5/2010 Morishima et al. 6/2010 Lee 6/2010 Grisstede et al. 9/2010 Grisstede et al. 9/2010 Grisstede et al. 9/2010 Kumar et al. 9/2010 Kumar et al. 9/2010 Kumar et al. 9/2011 Kato et al. 3/2011 Lee et al. | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida 6,983,589 B2 1/2006 Lewis et al. 7,063,642 B1 6/2006 Hu et al. 7,073,325 B2 7/2006 Nakatani et al. 7,082,753 B2 8/2006 Dalla Betta et al. 7,111,456 B2 9/2006 Sasaki et al. 7,146,800 B2 1/2007 Uchida et al. 7,299,625 B2 11/2007 Uchida et al. 7,332,135 B2 7/2008 Gandhi et al. 7,412,823 B2 8/2008 Reuter et al. 7,454,900 B2 11/2008 Kato et al. 7,484,504 B2 2/2009 Kato et al. 7,506,502 B2 3/2009 Nakano et al. | 2009/0120072 A1
2009/0151332 A1
2009/0191108 A1
2009/0196811 A1
2009/0229251 A1
2009/0249768 A1
2009/028809 A1
2009/0288393 A1
2009/0313970 A1
2010/0055012 A1
2010/0107613 A1
2010/0107613 A1
2010/0126148 A1
2010/015933 A1
2010/0126448 A1
2010/01233051 A1
2010/0233051 A1
2010/02342459 A1
2011/0041486 A1
2011/0047984 A1
2011/0047988 A1 | 5/2009 Sarai 5/2009 Dalla Betta et al. 6/2009 Toshioka et al. 7/2009 Blanchard et al. 8/2009 Yamashita et al. 9/2009 Kadowaki 10/2009 Asanuma et al. 11/2009 Toshioka 11/2009 Iida 11/2010 Katoh et al. 3/2010 Grisstede et al. 5/2010 Masuda et al. 5/2010 Morishima et al. 6/2010 Lee 6/2010 Grisstede et al. 9/2010 Grisstede et al. 9/2010 Grisstede et al. 9/2010 Kumar et al. 9/2010 Kumar et al. 9/2010 Kumar et al. 9/2011 Kato et al. 3/2011 Lee et al. 3/2011 Lee et al. | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,477,834 B1 11/2002 Asanuma et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida 6,983,589 B2 1/2006 Lewis et al. 7,063,642 B1 6/2006 Hu et al. 7,073,325 B2 7/2006 Nakatani et al. 7,082,753 B2 8/2006 Dalla Betta et al. 7,111,456 B2 9/2006 Yoshida et al. 7,1146,800 B2 12/2006 Sasaki et al. 7,146,800 B2 12/2007 Uchida et al. 7,299,625 B2 11/2007 Uchida et al. 7,332,135 B2 1/2007 Uchida et al. 7,332,135 B2 1/2007 Uchida et al. 7,412,823 B2 8/2008 Reuter et al. 7,444,504 B2 2/2008 Kato et al. 7,506,502 B2 3/2009 Nakano et al. 7,549,284 B2 6/2009 Iihoshi et al. | 2009/0120072 A1
2009/0151332 A1
2009/0191108 A1
2009/0196811 A1
2009/0229251 A1
2009/0249768 A1
2009/0282809 A1
2009/0283393 A1
2009/038393 A1
2009/038393 A1
2010/0005873 A1
2010/0055012 A1
2010/015012 A1
2010/015012 A1
2010/0154387 A1
2010/0154387 A1
2010/0154387 A1
2010/0233051 A1
2010/0233051 A1
2010/0234249 A1
2011/0041486 A1
2011/0041486 A1 | 5/2009 Sarai 5/2009 Dalla Betta et al. 6/2009 Toshioka et al. 7/2009 Blanchard et al. 8/2009 Yamashita et al. 9/2009 Kadowaki 10/2009 Asanuma et al. 11/2009 Toshioka 11/2009 Ida 11/2009 Ida 11/2010 Katoh et al. 12/2009 Ida 1/2010 Katoh et al. 3/2010 Grisstede et al. 5/2010 Masuda et al. 5/2010 Morishima et al. 6/2010 Lee 6/2010 Grisstede et al. 9/2010 Grisstede et al. 9/2010 Grisstede et al. 9/2010 Kumar et al. 9/2010 Kumar et al. 9/2010 Kumar et al. 9/2011 Kato et al. 3/2011 Lee et al. | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,477,834 B1 11/2002 Asanuma et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida 6,983,589 B2 1/2006 Lewis et al. 7,063,642 B1 6/2006 Hu et al. 7,073,325 B2 7/2006 Nakatani et al. 7,111,456 B2 9/2006 Yoshida et al. 7,111,456 B2 9/2006 Yoshida et al. 7,146,800 B2 12/2006 Sasaki et al. 7,146,800 B2 12/2007 Betta et al. 7,299,625 B2 11/2007 Uchida et al. 7,332,135 B2 2/2008 Gandhi et al. 7,412,823 B2 8/2008 Reuter et al. 7,445,900 B2 11/2007 Kato et al. 7,549,284 B2 6/2009 Kato et al. 7,549,284 B2 6/2009 Iihoshi et al. 7,703,275 B2 4/2010 Asanuma et al. | 2009/0120072 A1 2009/0151332 A1 2009/0191108 A1 2009/0196811 A1 2009/0229251 A1 2009/0249768 A1 2009/0282809 A1 2009/0288393 A1 2009/02873 A1 2010/0055012 A1 2010/015413 A1 2010/0154387 A1 2010/0126148 A1 2010/0154387 A1 2010/0233051 A1 2010/0233051 A1 2010/0242459 A1 2011/0047984 A1 2011/0047988 A1 2011/0047988 A1 2011/0113754 A1 2011/0120100 A1 2011/0120100 A1 | 5/2009 Sarai 5/2009 Dalla Betta et al. 6/2009 Toshioka et al. 7/2009 Blanchard et al. 8/2009 Yamashita et al. 9/2009 Kadowaki 10/2009 Tsujimoto et al. 11/2009 Tsujimoto et al. 11/2009 Iida 11/2009 Iida 1/2010 Katoh et al. 3/2010 Grisstede et al. 5/2010 Tsujimoto et al. 6/2010 Lee 6/2010 Shibata et al. 9/2010 Grisstede et al. 9/2010 Tsujimoto et al. 19/2010 Tsujimoto et al. 19/2010 Tsujimoto et al. 19/2010 Katoh et al. 19/2010 Tsujimoto et al. 19/2010 Tsujimoto et al. 19/2011 Kato et al. 19/2011 Lee et al. 19/2011 Lee et al. 19/2011 Vin et al. 19/2011 Vin et al. 19/2011 Onodera et al. | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,477,834 B1 11/2002 Asanuma et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida 6,983,589 B2 1/2006 Lewis et al. 7,063,642 B1 6/2006 Hu et al. 7,073,325 B2 7/2006 Nakatani et al. 7,082,753 B2 8/2006 Dalla Betta et al. 7,111,456 B2 9/2006 Yoshida et al. 7,1146,800 B2 12/2006 Sasaki et al. 7,146,800 B2 12/2007 Uchida et al. 7,299,625 B2 11/2007 Uchida et al. 7,332,135 B2 1/2007 Uchida et al. 7,332,135 B2 1/2007 Uchida et al. 7,412,823 B2 8/2008 Reuter et al. 7,444,504 B2 2/2008 Kato et al. 7,506,502 B2 3/2009 Nakano et al. 7,549,284 B2 6/2009 Iihoshi
et al. | 2009/0120072 A1 2009/0151332 A1 2009/0191108 A1 2009/0196811 A1 2009/0229251 A1 2009/0249768 A1 2009/0282809 A1 2009/0288393 A1 2009/038393 A1 2010/0005873 A1 2010/0107613 A1 2010/0107613 A1 2010/0126148 A1 2010/0126148 A1 2010/0126387 A1 2010/0233051 A1 2010/0233051 A1 2010/0233051 A1 2010/0242459 A1 2011/041486 A1 2011/0447984 A1 2011/047984 A1 2011/047988 A1 2011/0147155 A1 2011/0147155 A1 2011/0147155 A1 2011/0147155 A1 2011/0147155 A1 | 5/2009 Sarai 5/2009 Dalla Betta et al. 6/2009 Toshioka et al. 7/2009 Blanchard et al. 8/2009 Yamashita et al. 9/2009 Kadowaki 10/2009 Tsujimoto et al. 11/2009 Tsujimoto et al. 11/2009 Iida 11/2010 Katoh et al. 3/2010 Grisstede et al. 5/2010 Masuda et al. 5/2010 Morishima et al. 6/2010 Lee 6/2010 Shibata et al. 9/2010 Grisstede et al. 9/2010 Tsujimoto et al. 1/2010 Katoh et al. 1/2010 Morishima et al. 1/2010 Lee 1/2010 Katoh et al. 1/2010 Lee 1/2010 Lee 1/2010 Lee 1/2010 Tsujimoto et al. 1/2011 Kato et al. 1/2011 Lewis et al. 1/2011 Lewis et al. 1/2011 Vin et al. 1/2011 Vin et al. 1/2011 Onodera et al. 1/2011 Wan et al. | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,477,834 B1 11/2002 Asanuma et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida 6,983,589 B2 1/2006 Lewis et al. 7,063,642 B1 6/2006 Hu et al. 7,073,325 B2 7/2006 Nakatani et al. 7,082,753 B2 8/2006 Dalla Betta et al. 7,111,456 B2 9/2006 Sasaki et al. 7,146,800 B2 11/2007 Uchida et al. 7,1299,625 B2 11/2007 Uchida et al. 7,299,625 B2 11/2007 Uchida et al. 7,412,823 B2 8/2008 Reuter et al. 7,454,900 B2 11/2008 Rato et al. 7,506,502 B2 3/2009 Nakano et al. 7,504,284 B2 6/2009 Nakano et al. 7,703,275 B2 4/2010 Asanuma et al. 7,707,821 B1 5/2010 Legare 7,861,516 B2 1/2011 Allansson et al. | 2009/0120072 A1 2009/0151332 A1 2009/0191108 A1 2009/0196811 A1 2009/0229251 A1 2009/0249768 A1 2009/0282809 A1 2009/0288393 A1 2009/038393 A1 2010/0005873 A1 2010/0107613 A1 2010/017613 A1 2010/0126148 A1 2010/0132356 A1 2010/0233051 A1 2010/0233051 A1 2010/0233051 A1 2010/0242459 A1 2011/0247984 A1 2011/0047988 A1 2011/047988 A1 2011/047988 A1 2011/0173950 A1 2011/0131952 A1 2011/0131952 A1 2011/0131952 A1 2011/0173950 A1 | 5/2009 Sarai 5/2009 Dalla Betta et al. 6/2009 Toshioka et al. 7/2009 Blanchard et al. 8/2009 Yamashita et al. 9/2009 Kadowaki 10/2009 Asanuma et al. 11/2009 Toshioka 11/2009 Ida 11/2009 Ida 11/2010 Katoh et al. 12/2009 Ida 1/2010 Katoh et al. 5/2010 Tsujimoto et al. 5/2010 Masuda et al. 5/2010 Morishima et al. 6/2010 Lee 6/2010 Shibata et al. 9/2010 Grisstede et al. 9/2010 Grisstede et al. 9/2010 Kumar et al. 9/2010 Kumar et al. 12/2011 Kato et al. 13/2011 Lee et al. 13/2011 Lewis et al. 13/2011 Lewis et al. 13/2011 Kohara et al. 15/2011 Yin et al. 16/2011 Onodera et al. 17/2011 Wan et al. 19/2011 Wan et al. | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,477,834 B1 11/2002 Asanuma et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida 6,983,589 B2 1/2006 Lewis et al. 7,063,642 B1 6/2006 Hu et al. 7,073,325 B2 7/2006 Nakatani et al. 7,082,753 B2 8/2006 Dalla Betta et al. 7,111,456 B2 9/2006 Yoshida et al. 7,137,379 B2 11/2006 Sasaki et al. 7,146,800 B2 12/2006 Toshioka et al. 7,165,393 B2 1/2007 Uchida et al. 7,332,135 B2 1/2007 Uchida et al. 7,332,135 B2 1/2007 Uchida et al. 7,412,823 B2 8/2008 Reuter et al. 7,444,504 B2 2/2008 Gandhi et al. 7,506,502 B2 3/2009 Nakano et al. 7,507,3275 B2 4/2010 Asanuma et al. 7,707,821 B1 5/2010 Legare 7,861,516 B2 1/2011 Allansson et al. 8,099,950 B2 1/2012 Kojima et al. | 2009/0120072 A1 2009/0151332 A1 2009/0191108 A1 2009/0196811 A1 2009/029251 A1 2009/0249768 A1 2009/028809 A1 2009/0288393 A1 2009/0313970 A1 2010/0055012 A1 2010/0107613 A1 2010/0107613 A1 2010/0126148 A1 2010/0123356 A1 2010/0123356 A1 2010/023424 A1 2011/023454 A1 2011/0247484 A1 2011/0047984 A1 2011/0047984 A1 2011/013754 A1 2011/013754 A1 2011/0131952 A1 2011/013755 A1 2011/013755 A1 2011/023624 A1 2011/024459 A1 2011/0347984 A1 2011/0347984 A1 2011/0347984 A1 2011/0347984 A1 2011/0347984 A1 2011/0347984 A1 2011/0347985 | 5/2009 Sarai 5/2009 Dalla Betta et al. 6/2009 Toshioka et al. 7/2009 Blanchard et al. 8/2009 Yamashita et al. 9/2009 Kadowaki 10/2009 Asanuma et al. 11/2009 Toshioka 11/2009 Ida 11/2009 Ida 11/2009 Matsuno et al. 11/2009 Ida 1/2010 Katoh et al. 3/2010 Grisstede et al. 5/2010 Morishima et al. 5/2010 Morishima et al. 6/2010 Lee 6/2010 Shibata et al. 9/2010 Kumar et al. 9/2010 Kumar et al. 1/2011 Kato et al. 3/2011 Lee et al. 3/2011 Lee et al. 3/2011 Lee et al. 3/2011 Levis et al. 5/2011 Yin et al. 6/2011 Onodera et al. 7/2011 Wan et al. 9/2011 Hancu et al. | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,477,834 B1 11/2002 Asanuma et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida 6,983,589 B2 1/2006 Lewis et al. 7,063,642 B1 6/2006 Hu et al. 7,073,325 B2 7/2006 Nakatani et al. 7,111,456 B2 9/2006 Yoshida et al. 7,111,456 B2 9/2006 Yoshida et al. 7,146,800 B2 12/2006 Sasaki et al. 7,146,800 B2 12/2006 Toshioka et al. 7,146,800 B2 12/2007 Uchida et al. 7,332,135 B2 1/2007 Uchida et al. 7,332,135 B2 1/2007 Uchida et al. 7,332,135 B2 1/2007 Uchida et al. 7,412,823 B2 8/2008 Reuter et al. 7,4454,900 B2 11/2007 Uchida et al. 7,454,900 B2 11/2007 Uchida et al. 7,549,284 B2 2/2008 Reuter et al. 7,549,284 B2 1/2009 Kato et al. 7,549,284 B2 6/2009 Iihoshi et al. 7,707,821 B1 5/2010 Legare 7,861,516 B2 1/2011 Allansson et al. 8,099,950 B2 1/2012 Tsujimoto et al. 8,261,532 B2 9/2012 Fukuda et al. | 2009/0120072 A1 2009/0151332 A1 2009/0191108 A1 2009/0196811 A1 2009/029251 A1 2009/0249768 A1 2009/0282809 A1 2009/028393 A1 2009/028397 A1 2010/0055012 A1 2010/0107613 A1 2010/0107613 A1 2010/0107613 A1 2010/0132356 A1 2010/0132356 A1 2010/0233051 A1 2010/0233051 A1 2010/02342459 A1 2011/00447988 A1 2011/0047988 A1 2011/0137354 2011/0137355 A1 2011/0120100 A1 2011/0120100 A1 2011/01209459 A1 2011/0120660 A1 2012/0122660 A1 | 5/2009 Sarai 5/2009 Dalla Betta et al. 6/2009 Toshioka et al. 7/2009 Blanchard et al. 8/2009 Yamashita et al. 9/2009 Kadowaki 10/2009 Asanuma et al. 11/2009 Toshioka 11/2009 Iida 11/2010 Katoh et al. 3/2010 Grisstede et al. 5/2010 Masuda et al. 5/2010 Morishima et al. 6/2010 Lee 6/2010 Shibata et al. 9/2010 Kumar et al. 9/2010 Kumar et al. 9/2010 Kumar et al. 12/2011 Kato et al. 3/2011 Lee et al. 3/2011 Lewis et al. 3/2011 Lewis et al. 5/2011 Yin et al. 6/2011 Onodera et al. 7/2011 Wan et al. 9/2011 Hancu et al. 5/2012 Andersen et al. 5/2012 Yang et al. | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,477,834 B1 11/2002 Asanuma et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida 6,983,589 B2 1/2006 Lewis et al. 7,063,642 B1 6/2006 Hu et al. 7,073,325 B2 7/2006 Nakatani et al. 7,111,456 B2 9/2006 Yoshida et al. 7,111,456 B2 9/2006 Yoshida et al. 7,146,800 B2 12/2006 Sasaki et al. 7,146,800 B2 12/2006 Toshioka et al. 7,146,800 B2 12/2006 Toshioka et al. 7,142,823 B2 11/2007 Uchida et al. 7,332,135 B2 2/2008 Reuter et al. 7,454,900 B2 11/2007 Gandhi et al. 7,454,900 B2 11/2008 Hayashi 7,484,504 B2 2/2008 Kato et al. 7,506,502 B2 3/2009 Nakano et al. 7,703,275 B2 4/2010 Asanuma et al. 7,707,821 B1 5/2010 Legare 7,861,516 B2 1/2011 Allansson et al. 8,099,950 B2 1/2012 Fukuda et al. 8,281,569 B2 10/2012 Handa et al. | 2009/0120072 A1 2009/0151332 A1 2009/0191108 A1 2009/0196811 A1 2009/029251 A1 2009/0249768 A1 2009/028809 A1 2009/0288393 A1 2009/0313970 A1 2010/0055012 A1 2010/0107613 A1 2010/0107613 A1 2010/0126148 A1 2010/0123356 A1 2010/0123356 A1 2010/023424 A1 2011/023454 A1 2011/0247484 A1 2011/0047984 A1 2011/0047984 A1 2011/013754 A1 2011/013754 A1 2011/0131952 A1 2011/013755 A1 2011/013755 A1 2011/023624 A1 2011/024459 A1 2011/0347984 A1 2011/0347984 A1 2011/0347984 A1 2011/0347984 A1 2011/0347984 A1 2011/0347984 A1 2011/0347985 | 5/2009 Sarai 5/2009 Dalla Betta et al. 6/2009 Toshioka et al. 7/2009 Blanchard et al. 8/2009 Yamashita et al. 9/2009 Kadowaki 10/2009 Asanuma et al. 11/2009 Toshioka 11/2009 Ida 11/2009 Ida 11/2009 Matsuno et al. 11/2009 Ida 1/2010 Katoh et al. 3/2010 Grisstede et al. 5/2010 Morishima et al. 5/2010 Morishima et al. 6/2010 Lee 6/2010 Shibata et al. 9/2010 Kumar et al. 9/2010 Kumar et al. 1/2011 Kato et al. 3/2011 Lee et al. 3/2011 Lee et al. 3/2011 Lee et al. 3/2011 Levis et al. 5/2011 Yin et al. 6/2011 Onodera et al. 7/2011 Wan et al. 9/2011 Hancu et al. | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,477,834 B1 11/2002 Asanuma et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida 6,983,589 B2 1/2006 Lewis et al. 7,063,642 B1 6/2006 Hu et al. 7,073,325 B2 7/2006 Nakatani et al. 7,082,753 B2 8/2006 Dalla Betta et al. 7,111,456 B2 9/2006 Sasaki et al. 7,1146,800 B2 11/2007 Uchida et al. 7,1299,625 B2 11/2007 Uchida et al. 7,332,135 B2 2/2008 Gandhi et al. 7,412,823 B2 8/2008 Reuter et al. 7,454,900 B2 11/2008 Hayashi 7,484,504 B2 2/2009 Kato et al. 7,506,502 B2 3/2009 Nakano et al. 7,703,275 B2 4/2010 Asanuma et al. 7,707,821 B1 5/2010 Legare 7,861,516 B2 1/2011 Allansson et al.
8,099,950 B2 1/2012 Kojima et al. 8,215,101 B2 7/2012 Tsujimoto et al. 8,281,569 B2 1/2011 Handa et al. 8,572,950 B2 11/2013 Bisaiji et al. | 2009/0120072 A1 2009/0151332 A1 2009/0191108 A1 2009/0196811 A1 2009/0229251 A1 2009/0249768 A1 2009/0282809 A1 2009/0282809 A1 2009/028393 A1 2009/038393 A1 2010/00055012 A1 2010/0107613 A1 2010/0154387 A1 2010/0154387 A1 2010/0233051 A1 2010/023424 A1 2010/0242459 A1 2011/0047984 A1 2011/0047984 A1 2011/0047988 A1 2011/0131952 A1 2011/0131952 A1 2011/0131952 A1 2011/020460 A1 2011/022660 A1 2012/0122660 A1 2012/0124967 A1 2012/0124967 A1 2012/0131908 A1 2013/0000284 A1 | 5/2009 Sarai 5/2009 Dalla Betta et al. 6/2009 Toshioka et al. 7/2009 Blanchard et al. 8/2009 Yamashita et al. 9/2009 Kadowaki 10/2009 Tsujimoto et al. 11/2009 Tsujimoto et al. 11/2009 Iida 11/2009 Iida 1/2010 Katoh et al. 3/2010 Grisstede et al. 5/2010 Tsujimoto et al. 5/2010 Grisstede et al. 5/2010 Tsujimoto et al. 6/2010 Lee 6/2010 Shibata et al. 9/2010 Grisstede et al. 9/2010 Tsujimoto et al. 2/2011 Kato et al. 3/2011 Lee et al. 3/2011 Lee et al. 3/2011 Lewis et al. 5/2011 Vin et al. 6/2011 Onodera et al. 5/2011 Wan et al. 9/2011 Hancu et al. 5/2012 Andersen et al. 5/2012 Andersen et al. 5/2012 Bisaiji et al. 1/2013 Bisaiji et al. | | 5,402,641 A 4/1995 Katoh et al. 5,882,607 A 3/1999 Miyadera et al. 6,109,024 A 8/2000 Kinugasa et al. 6,327,851 B1 12/2001 Bouchez et al. 6,413,483 B1 7/2002 Brisley et al. 6,477,834 B1 11/2002 Asanuma et al. 6,667,018 B2 12/2003 Noda et al. 6,813,882 B2 11/2004 Hepburn et al. 6,854,264 B2 2/2005 Elwart et al. 6,877,311 B2 4/2005 Uchida 6,983,589 B2 1/2006 Lewis et al. 7,063,642 B1 6/2006 Hu et al. 7,073,325 B2 7/2006 Nakatani et al. 7,082,753 B2 8/2006 Nakatani et al. 7,111,456 B2 9/2006 Yoshida et al. 7,137,379 B2 11/2006 Sasaki et al. 7,146,800 B2 12/2006 Toshioka et al. 7,146,800 B2 12/2006 Toshioka et al. 7,299,625 B2 11/2007 Betta et al. 7,412,823 B2 8/2008 Reuter et al. 7,454,900 B2 11/2008 Hayashi 7,484,504 B2 2/2008 Kato et al. 7,506,502 B2 3/2009 Kato et al. 7,703,275 B2 4/2010 Asanuma et al. 7,707,821 B1 5/2010 Legare 7,861,516 B2 1/2011 Allansson et al. 8,099,950 B2 1/2012 Fukuda et al. 8,215,101 B2 7/2012 Fukuda et al. 8,281,559 B2 10/2012 Fukuda et al. 8,281,559 B2 10/2012 Handa et al. 8,281,559 B2 10/2012 Handa et al. 8,281,559 B2 10/2012 Handa et al. | 2009/0120072 A1 2009/0151332 A1 2009/0151332 A1 2009/019108 A1 2009/029251 A1 2009/0249768 A1 2009/0282809 A1 2009/028393 A1 2009/028393 A1 2009/0313970 A1 2010/0055012 A1 2010/0154387 A1 2010/0154387 A1 2010/0233051 A1 2010/02342459 A1 2011/024486 A1 2011/0047984 A1 2011/0047984 A1 2011/0047984 A1 2011/013754 2011/014988 A1 2011/014988 A1 2011/014988 A1 2011/014988 A1 2011/014984 2011/014988 A1 2011/014988 A1 2011/014988 A1 2011/014988 A1 | 5/2009 Sarai 5/2009 Dalla Betta et al. 6/2009 Toshioka et al. 7/2009 Blanchard et al. 8/2009 Yamashita et al. 9/2009 Kadowaki 10/2009 Tsujimoto et al. 11/2009 Tsujimoto et al. 11/2009 Ida 11/2009 Ida 11/2010 Katoh et al. 3/2010 Katoh et al. 3/2010 Tsujimoto et al. 5/2010 Masuda et al. 5/2010 Tsujimoto et al. 5/2010 Tsujimoto et al. 5/2010 Tsujimoto et al. 5/2010 Morishima et al. 6/2010 Lee 6/2010 Shibata et al. 9/2010 Grisstede et al. 9/2010 Kumar et al. 9/2010 Katoh et al. 3/2011 Lee et al. 3/2011 Lee et al. 3/2011 Lee et al. 3/2011 Lee et al. 5/2011 Wan et al. 5/2011 Wan et al. 6/2011 Hancu et al. 5/2012 Andersen et al. 5/2012 Yang et al. 5/2012 Bisaiji et al. | | (56) | Referen | ces Cited | WO WO 2008/007810 1/2008 | | |----------|--------------------------------|--------------------|--|--| | | U.S. PATENT | DOCUMENTS | WO WO 2008/012653 A2 1/2008
WO WO 2009/016822 2/2009
WO WO 2009/056958 5/2009 | | | | EOREIGN DATEN | NT DOCUMENTS | WO WO 2009/030938 3/2009
WO WO 2009/082035 A1 7/2009 | | | | TOKEIGN TATE | NI BOCOMENIS | WO WO 2011/114499 9/2011 | | | EP | 1 033 479 A2 | 9/2000 | WO WO 2011/114501 9/2011 | | | EP | 1 273 337 A1 | 1/2003 | WO WO 2011/118044 9/2011 | | | EP
EP | 1 371 415 A1
1 519 015 A2 | 12/2003
3/2005 | OTHER RUDI ICATIONS | | | EP | 1544429 A1 | 6/2005 | OTHER PUBLICATIONS | | | EP | 1 710 407 A1 | 10/2006 | Office Action dated Dec. 20, 2013 issued in U.S. Appl. No. | | | EP
EP | 1 793 099 A1
1 911 506 A1 | 6/2007
4/2008 | 13/264,230. | | | EP | 1 936 164 A1 | 6/2008 | Aug. 13, 2013 International Preliminary Report on Patentability | | | EP | 1965 048 A1 | 9/2008 | issued in International Patent Application No. PCT/JP2011/053429 | | | EP
EP | 2 063 078 A1
2 149 684 A1 | 5/2009
2/2010 | (with translation). | | | EP | 2 149 084 AT
2 239 432 | 10/2010 | Aug. 8, 2013 Office Action issued in U.S. Appl. No. 13/258,483. Feb. 6, 2014 Corrected Notice of Allowability issued in U.S. Appl. | | | EP | 2 460 989 A1 | 6/2012 | No. 13/202,694. | | | JР | A-04-200637 | 7/1992 | Dec. 21, 2010 International Search Report issued in International | | | JP
JP | H-08-117601
A-09-004437 | 5/1996
1/1997 | Patent Application No. PCT/JP2010/065449. | | | JP | A-09-220440 | 8/1997 | Dec. 27, 2011 International Search Report issued in International | | | JР | A-11-30117 | 2/1999 | Patent Application No. PCT/JP2011/075618. Jun. 15, 2010 International Search Report issued in International | | | JP
JP | A-11-062559
A-11-081994 | 3/1999
3/1999 | Patent Application No. PCT/JP2010/054730 (with translation). | | | JP | A-2000-257419 | 9/2000 | Nov. 22, 2010 International Search Report issued in International | | | JP | A-2002-188429 | 7/2002 | Patent Application No. PCT/JP2010/065186. | | | JP
JP | A-2004-016850
A-2004-36543 | 1/2004
2/2004 | Jan. 18, 2011 International Search Report issued in International Patent Application No. PCT/JP2010/067705. | | | JР | A-2004-216224 | 8/2004 | Jan. 18, 2011 International Search Report issued in International | | | JP | A-2004-290965 | 10/2004 | Patent Application No. PCT/JP2010/067707. | | | JP
JP | A-2004-308526
A-2004-316458 | 11/2004
11/2004 | Jan. 18, 2011 International Search Report issued in International | | | JР | A-2005-61340 | 3/2005 | Patent Application No, PCT/JP2010/068785. | | | JP | A-2005-113801 | 4/2005 | Jul. 14, 2014 Office Action issued in U.S. Appl. No. 13/262,001. Jul. 14, 2014 Office Action issued in U.S. Appl. No. 13/264,884. | | | JP
JP | A-2005-171853
A-2005-177738 | 6/2005
7/2005 | Jun. 16, 2014 Office Action issued in U.S. Appl. No. 13/204,884. | | | JP | A-2005-177738
A-2006-501390 | 1/2006 | Jun. 18, 2014 Office Action issued in U.S. Appl. No. 13/582,909. | | | JP | A-2006-512529 | 4/2006 | Jun. 19, 2014 Office Action issued in U.S. Appl. No. 13/264,594. | | | JP
JP | A-2006-342700
A-2007-064167 | 12/2006
3/2007 | Jun. 21, 2011 International Search Report issued in International | | | JP | A-2007-514090 | 5/2007 | Patent Application No. PCT/JP2011/059880. Jun. 23, 2014 Office Action issued in U.S. Appl. No. 13/262,858. | | | JP | A-2007-514104 | 5/2007 | Jun. 26, 2014 Office Action issued in U.S. Appl. No. 13/580,000. | | | JP
JP | A-2007-154794
B2-3969450 | 6/2007
6/2007 | Jun. 29, 2010 International Search Report issued in International | | | JР | A-2007-278120 | 10/2007 | Patent Application No. PCT/JP2010/055303. | | | JP | A-2008-002451 | 1/2008 | Mar. 15, 2011 International Search Report issued in International Patent Application No. PCT/JP2011/053429. | | | JP
JP | A-2008-19760
A-2008-69769 | 1/2008
3/2008 | Mar. 22, 2011 International Search Report issued in International | | | JР | A-2008-231926 | 10/2008 | Patent Application No. PCT/JP2010/073645. | | | JP | A-2008-232003 | 10/2008 | Mar. 22, 2011 International Search Report issued in International | | | JP
JP | A-2008-255858
A-2008-267178 | 10/2008
11/2008 | Patent Application No. PCT/JP2010/072299. Mar. 8, 2011 International Search Report issued in International | | | JР | A-2008-267217 | 11/2008 | Patent Application No. PCT/JP2011/052969 (with translation). | | | JP | A-2008-286186 | 11/2008 | May 17, 2011 International Search Report issued in International | | | JP
JP | A-2008-543559
A-2009-30560 | 12/2008
2/2009 | Patent Application No. PCT/JP2011/057264. | | | JР | A-2009-112967 | 5/2009 | May 2, 2014 Office Action issued in U.S. Appl. No. 13/263,660. | | | JP | A-2009-114879 | 5/2009 | Mar. 28, 2014 Notice of Allowance issued in U.S. Appl. No. 13/582,862. | | | JP
JP | A-2009-156067
A-2009-165922 | 7/2009
7/2009 | Mar. 4, 2014 Notice of Allowance issued in U.S. Appl. No. | | | JР | A-2009-167973 | 7/2009 | 13/255,786. | | | JP | A-2009-168031 | 7/2009 | Nov. 13, 2013 Notice of Allowance issued in U.S. Appl. No. | | | JP
JP | A-2009-191823
A-2009-221939 | 8/2009
10/2009 | 13/202,692.
Oct. 17, 2013 Notice of Allowance issued in U.S. Appl. No. | | | JР | A-2009-226349 | 10/2009 | 13/202,694. | | | JР | A-2009-243362 | 10/2009 | Nov. 22, 2010 International Search Report issued in International | | | JP
JP | A-2009-275631
A-2009-275666 | 11/2009
11/2009 | Patent Application No. PCT/JP2010/065187. | | | JР | A-2010-012459 | 1/2010 | Nov. 26, 2012 Office Action issued in U.S. Appl. No. 13/202,694. | | | JР | A-2010-048134 | 3/2010 | Oct. 26, 2010 International Search Report issued in International Patent Application No. PCT/JP2010/063135. | | | JP
JP | A-2011-190803
B1-4868097 | 9/2011
2/2012 | Oct. 26, 2012 Office Action issued in U.S. Appl. No. 13/202,692. | | | WO | WO 2005/059324 | 6/2005 | Oct. 23, 2013 Office Action issued in U.S. Appl. No. 13/263,272. | | | WO | WO 2006/131825 | 12/2006 | Apr. 23, 2014 Office Action issued in U.S. Appl. No. 13/260,986. | | | WO | WO 2007/026229 | 3/2007
12/2007 | Apr. 3, 2014 Office Action issued in U.S. Appl. No. 13/259,574. | | | WO | WO 2007/141638 | 12/2007 | Jul. 1, 2014 Office Action issued in U.S.
Appl. No. 13/257,789. | | #### (56) References Cited #### OTHER PUBLICATIONS - Jul. 24, 2013 Office Action issued in U.S. Appl. No. 13/202,692. May 7, 2014 Office Action issued in U.S. Appl. No. 13/264,062. May 8, 2014 Office Action issued in U.S. Appl. No. 13/375,674. U.S. Appl. No. 13/202,733 in the name of Bisaiji et al., filed Sep. 30, 2011. - U.S. Appl. No. 13/257,789 in the name of Nishioka et al., filed Oct. 14, 2011. - U.S. Appl. No. 13/258,483 in the name of Numata et al., filed Sep. 22, 2011. - U.S. Appl. No. 13/259,574 in the name of Tsukamoto et al., filed Sep. 23, 2011. - U.S. Appl. No. 13/259,885 in the name of Umemoto et al., filed Sep. 23, 2011. - U.S. Appl. No. 13/260,986 in the name of Watanabe et al., filed Sep. 29, 2011. - U.S. Appl. No. 13/263,272 in the name of Bisaiji et al., filed Oct. 6, 2011 - U.S. Appl. No. 13/263,660 in the name of Umemoto et al., filed Oct. 7 \cdot 2011 - U.S. Appl. No. 13/264,062 in the name of Watanabe et al., filed Oct. - 12, 2011.U.S. Appl. No. 13/264,594 in the name of Inoue et al., filed Oct. 14, - U.S. Appl. No. 13/264,884 in the name of Bisaiji et al., filed Oct. 17, - 2011. U.S. Appl. No. 13/375,674 in the name of Inoue et al., filed Dec. 1, - 2011. U.S. Appl. No. 13/578,148 in the name of Umemoto et al., filed - Aug. 9, 2012. U.S. Appl. No. 13/581,186 in the name of Kazuhiro Umemoto et al., - filed Aug. 24, 2012. U.S. Appl. No. 13/580,000 in the name of Bisaiji et al., filed Aug. - 20, 2012.U.S. Appl. No. 13/582,862 in the name of Uenishi et al., filed Sep. - 5, 2012. U.S. Appl. No. 13/582,909 in the name of Kazuhiro Umemoto et al., - filed Sep. 5, 2012. U.S. Appl. No. 13/202,694 in the name of Bisaiji et al., filed Aug. - 22, 2011.U.S. Appl. No. 14/108,113 in the name of Bisaiji et al., filed Dec. - 16, 2013.U.S. Appl. No. 14/152,629 in the name of Umemoto et al., filed Jan. - 10, 2014.U.S. Appl. No. 13/262,001 in the name of Inoue et al., filed Oct. 19, 2011. - Nov. 22, 2010 Written Opinion issued in International Patent Application No. PCT/JP2010/065186 (with translation). - Dec. 27, 2011 Written Opinion issued in International Patent Application No. PCT/JP2011/075618. - Aug. 6, 2014 Notice of Allowance issued in U.S. Appl. No. 13/259,574. - Nov. 27, 2013 Notice of Allowance issued in U.S. Appl. No. 13/258,483. - Oct. 4, 2013 Notice of Allowance issued in U.S. Appl. No. 13/259.885. - Jan. 17, 2013 Office Action issued in U.S. Appl. No. 13/202,733. Jun. 15, 2010 International Search Report issued in International Application No. PCT/JP2010/054729. - Sep. 13, 2011 International Search Report issued in International Application No. PCT/JP2011/066628 (with Translation). - U.S. Appl. No. 13/502,210 in the name of Bisaiji, filed Apr. 16, 2012. - U.S. Appl. No. 13/499,211 in the name of Bisaiji et al., filed Mar. 29, 2012. - Jan. 22, 2014 Office Action issued in U.S. Appl. No. 13/499,211. Sep. 18, 2014 Notice of Allowance issued in U.S. Appl. No. 13/255,710. - Oct. 2, 2014 Office Action issued in U.S. Appl. No. 13/582,862. Jul. 9, 2013 Notice of Allowance issued in U.S. Appl. No. 13/255,774. - Dec. 9, 2013 Notice of Allowance issued in U.S. Appl. No. 13/262,506. - Dec. 27, 2013 Notice of Allowance issued in U.S. Appl. No. 13/502,210. - U.S. Appl. No. 13/262,506 in the name of Bisaiji et al., filed Sep. 30, 2011. - Dec. 22, 2014 Office Action issued in U.S. Appl. No. 13/264,230. Office Action dated May 27, 2014 issued in U.S. Appl. No. 13/255,710. - Jun. 15, 2010 International Search Report issued in PCT/JP2010/054740 (with translation). - Jun. 15, 2010 Written Opinion issued in PCT/JP2010/054740 (with translation). - Jun. 20, $20\dot{1}2$ Search Report issued in European Patent Application No. 10845966.0. - U.S. Appl. No. 13/255,774, filed Sep. 22, 2011 in the name of Bisaiji et al. - U.S. Appl. No. 13/255,710, filed Oct. 12, 2011 in the name of Bisaiji - U.S. Appl. No. 13/262,858, filed Oct. 4, 2011 in the name of Bisaiji et al. - U.S. Appl. No. 13/264,230, filed Oct. 13, 2011 in the name of Bisaiii. - U.S. Appl. No. 13/202,692, filed Sep. 20, 2011 in the name of Umemoto et al. - Office Action dated May 15, 2013 issued in U.S. Appl. No. 13/202,694. - Jun. 15, 2010 International Search Report issued in International Patent Application No. PCT/JP2010/054731 (with translation). - Jun. 29, 2010 International Search Report issued in International Patent Application No. PCT/JP2010/056345. - Apr. 4, 2013 Office Action issued in U.S. Appl. No. 13/255,710. - Jun. 3, 2015 Office Action issued in U.S. Appl. No. 14/152,629. Fig.1 21 17 4 10 -19 `5 15 30 40 41 37 235 LOAD SENSOR CRANK ANGLE SENSOR INPUT PORT **ROM** 42 37 33 34 **OUTPUT PORT** 38 - 36 Fig.3 Fig.4 Fig.5 Fig.6 (A) (B) Fig.7 (A) (B) Fig.8 Fig.9 Fig.10 Fig.11 NOX PURIFICATION RATE 50(%) 100 200 300 400 500 600 TC(°C) Fig.14 Fig.17 Fig.18 Fig.19 Fig.20 Fig.21 Fig.22 # EXHAUST PURIFICATION SYSTEM OF INTERNAL COMBUSTION ENGINE #### CONTINUATION INFORMATION This is a Continuation of application Ser. No. 13/202,733 filed Sep. 30, 2011, which in turn is a National Stage Application of PCT/JP2010/054740 filed Mar. 15, 2010. The disclosure of the prior applications is hereby incorporated by reference herein in its entirety. #### TECHNICAL FIELD The present invention relates to an exhaust purification system of an internal combustion engine. #### BACKGROUND ART Known in the art is an internal combustion engine which arranges, in an engine exhaust passage, an NO_x storage 20 catalyst which stores NO_x which is contained in exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean and which releases the stored NO_x , when the air-fuel ratio of the inflowing exhaust gas becomes rich, which arranges, in the engine exhaust passage upstream of the NO_x storage 25 catalyst, an oxidation catalyst which has an adsorption function, and which feeds hydrocarbons into the engine exhaust passage upstream of the oxidation catalyst to make the air-fuel ratio of the exhaust gas flowing into the NO_x storage catalyst rich when releasing NO_x from the NO_x 30 storage catalyst (for example, see Patent Literature 1). In this internal combustion engine, the hydrocarbons which are fed when releasing NO_x from the NO_x storage catalyst are made gaseous hydrocarbons at the oxidation catalyst, and the gaseous hydrocarbons are fed to the NO_x storage catalyst. As a result, the NO_x which is released from the NO_x storage catalyst is reduced well. # CITATION LIST #### Patent Literature Patent Literature 1: Japanese Patent No. 3969450 # SUMMARY OF INVENTION # Technical Problem However, there is the problem that when the NO_x storage catalyst becomes a high temperature, the NO_x purification 50 rate falls. An object of the present invention is to provide an exhaust purification system of an internal combustion engine which can obtain a high NO_x purification rate even if the temperature of the exhaust purification catalyst becomes a high 55 temperature. #### Solution to Problem According to the present invention, there is provided an 60 exhaust purification system of an internal combustion engine wherein a hydrocarbon feed valve for feeding hydrocarbons is arranged inside an engine exhaust passage, an exhaust purification catalyst for reacting NO_x contained in exhaust gas and hydrocarbons which are injected from the hydrocarbon feed valve and are partially oxidized is arranged in the engine exhaust passage downstream of the hydrocarbon 2 feed valve, a precious metal catalyst is carried on the exhaust purification catalyst and a basic layer is formed on the exhaust purification catalyst, the exhaust purification catalyst has a property of reducing the NO_X which is contained in the exhaust gas when hydrocarbons are injected from the hydrocarbon feed valve at predetermined feed intervals while maintaining an air-fuel ratio of an exhaust gas flowing into the exhaust purification catalyst lean and has a property of being increased in storage amount of NOx which is contained in the exhaust gas when the feed intervals of the hydrocarbons are longer than the predetermined feed intervals, and, at the time of engine operation, a first NO_x purification method which injects hydrocarbons from the hydrocarbon feed valve at the predetermined feed intervals while maintaining the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst lean so as to remove the NO_x contained in the exhaust gas and a second NO_x purification method which switches the air-fuel ratio of the exhaust gas which flows to the exhaust purification catalyst from lean to rich by intervals longer than the predetermined feed intervals so as to remove the NO_X are selectively used in accordance with an operating state of an engine. # Advantageous Effects of Invention By selectively using the first NO_X purification method and the second NO_X purification method, it is possible to obtain a high NO_X purification rate regardless of the operating state of the engine. #### BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an overall view of a compression ignition type internal combustion engine. FIG. 2 is a view schematically showing a surface part of a catalyst carrier. FIG. **3** is a view for explaining an oxidation reaction in an oxidation catalyst. FIG. 4 is a view showing a change of an air-fuel ratio of exhaust gas flowing into an exhaust purification catalyst. FIG. 5 is a view showing an NO_x purification rate. FIG. **6** is view for explaining an oxidation reduction reaction in an exhaust purification catalyst. FIG. 7 is a view for explaining an oxidation reduction reaction in an exhaust purification catalyst. FIG. 8 is a view showing a change of an air-fuel ratio of exhaust gas flowing into an exhaust purification catalyst etc. FIG. 9 is a view showing a map of an exhausted NO_X amount NOXA. FIG. 10 is a view
showing a fuel injection timing. FIG. 11 is a view showing an NO_x purification rate. FIG. 12 is a view showing a map of a hydrocarbon injection amount. FIG. 13 is a view showing an NO_X discharge rate etc. FIG. 14 is a view showing a change in an air-fuel ratio of exhaust gas (A/F) in etc. when switching from a second NO_X purification method to a first NO_X purification method. FIG. 15 is a flow chart for NO_X purification control. FIG. 16 is a view showing a flow chart etc. showing another embodiment of an NO_X purification method determining part A shown in FIG. 15. FIG. 17 is a view showing a flow chart etc. showing still another embodiment of an NO_X purification method determining part A shown in FIG. 15. FIG. 18 is a view showing a flow chart etc. showing another embodiment of an NO_X purification method determining part A shown in FIG. 15. FIG. 19 is a timing chart showing a change in an air-fuel ratio of exhaust gas (A/F) in etc. when switching from a second NO_X purification method to a first NO_X purification method. FIG. **20** is a timing chart showing a change in an air-fuel ratio of exhaust gas (A/F) in etc. when switching from a second NO_X purification method to a first NO_X purification 10 method. FIG. 21 is a view showing an increase coefficient. FIG. 22 is a partial enlarged cross-sectional view of another catalyst for removing NO_X . #### DESCRIPTION OF EMBODIMENTS FIG. 1 is an overall view of a compression ignition type internal combustion engine. Referring to FIG. 1, 1 indicates an engine body, 2 a 20 combustion chamber of each cylinder, 3 an electronically controlled fuel injector for injecting fuel into each combustion chamber 2, 4 an intake manifold, and 5 an exhaust manifold. The intake manifold 4 is connected through an intake duct 6 to an outlet of a compressor 7a of an exhaust turbocharger 7, while an inlet of the compressor 7a is connected through an intake air amount detector 8 to an air cleaner 9. Inside the intake duct 6, a throttle valve 10 driven by a step motor is arranged. Furthermore, around the intake duct 6, a cooling device 11 is arranged for cooling the intake 30 air which flows through the inside of the intake duct 6. In the embodiment shown in FIG. 1, the engine cooling water is guided to the inside of the cooling device 11 where the engine cooling water is used to cool the intake air. On the other hand, the exhaust manifold 5 is connected to 35 an inlet of the exhaust turbine 7b of the exhaust turbocharger 7, while the outlet of the exhaust turbine 7b is connected through an exhaust pipe 12 to an inlet of a hydrocarbon partial oxidation catalyst 13 able to partially oxidize the hydrocarbons HC. In the embodiment shown in FIG. 1, this 40 hydrocarbon partial oxidation catalyst 13 is comprised of an oxidation catalyst. An outlet of the hydrocarbon partial oxidation catalyst, that is, the oxidation catalyst 13, is connected to an inlet of an exhaust purification catalyst 14, while an outlet of the exhaust purification catalyst 14 is 45 connected to a particulate filter 15 for trapping particulate which is contained in the exhaust gas. Inside of the exhaust pipe 12 upstream of the oxidation catalyst 13, a hydrocarbon feed valve 16 is arranged for feeding hydrocarbons comprised of diesel oil or other fuel used as fuel of a compres- 50 sion ignition type internal combustion engine. In the embodiment shown in FIG. 1, diesel oil is used as the hydrocarbons which are fed from the hydrocarbon feed valve 16. Note that, the present invention can also be applied to a spark ignition type internal combustion engine which 55 burns fuel under a lean air-fuel ratio. In this case, hydrocarbons comprised of gasoline or other fuel which is used as fuel of a spark ignition type internal combustion engine are fed from the hydrocarbon feed valve 16. On the other hand, the exhaust manifold 5 and the intake 60 manifold 4 are connected with each other through an exhaust gas recirculation (hereinafter referred to as an "EGR") passage 17. Inside the EGR passage 17, a electronically controlled EGR control valve 18 is arranged. Further, around the EGR passage 17, a cooling device 19 is arranged for 65 cooling EGR gas flowing through the inside of the EGR passage 17. In the embodiment shown in FIG. 1, the engine 4 cooling water is guided to the inside of the cooling device 19 where the engine cooling water is used to cool the EGR gas. On the other hand, each fuel injector 3 is connected through a fuel feed tube 20 to a common rail 21. This common rail 21 is connected through an electronically controlled variable discharge fuel pump 22 to a fuel tank 23. The fuel which is stored inside of the fuel tank 23 is fed by the fuel pump 22 to the inside of the common rail 21. The fuel which is fed to the inside of the common rail 21 is fed through each fuel feed tube 20 to the fuel injector 3. An electronic control unit 30 is comprised of a digital computer provided with a ROM (read only memory) 32, a RAM (random access memory) 33, a CPU (microprocessor) 34, an input port 35, and an output port 36, which are 15 connected with each other by a bidirectional bus 31. At the oxidation catalyst 13, a temperature sensor 24 is attached for detecting the temperature of the oxidation catalyst 13. At the exhaust purification catalyst 14, a temperature sensor 25 is attached for detecting the temperature of the exhaust purification catalyst 14. The output signals of these temperature sensors 24 and 25 and intake air amount detector 8 are input through corresponding AD converters 37 to the input port 35. Further, the accelerator pedal 40 has a load sensor 41 connected to it which generates an output voltage proportional to the amount of depression L of the accelerator pedal 40. The output voltage of the load sensor 41 is input through a corresponding AD converter 37 to the input port 35. Furthermore, at the input port 35, a crank angle sensor 42 is connected which generates an output pulse every time a crankshaft rotates by, for example, 15°. On the other hand, the output port 36 is connected through corresponding drive circuits 38 to each fuel injector 3, a step motor for driving the throttle valve 10, the hydrocarbon feed valve 16, the EGR control valve 18, and the fuel pump 22. FIG. 2(A) schematically shows a surface part of a catalyst carrier carried on a substrate of an oxidation catalyst 13. As shown in FIG. 2(A), for example, a catalyst 51 comprised of platinum Pt or another such precious metal or silver Ag or copper Cu or other such transition metal is carried on a catalyst carrier 50 comprised of alumina. On the other hand, FIG. 2(B) schematically shows a surface part of a catalyst carrier which is carried on a substrate of the exhaust purification catalyst 14. At this exhaust purification catalyst 14, as shown in FIG. 2(B), for example, there is provided a catalyst carrier 52 made of alumina on which precious metal catalysts 53 and 54 are carried. Furthermore, on this catalyst carrier 52, a basic layer 55 is formed which includes at least one element selected from potassium K, sodium Na, cesium Cs, or another such alkali metal, barium Ba, calcium Ca, or another such alkali earth metal, a lanthanoid or another such rare earth and silver Ag, copper Cu, iron Fe, iridium Ir, or another metal able to donate electrons to NO_x. The exhaust gas flows along the top of the catalyst carrier 53, so the precious metal catalysts 53 and 54 can be said to be carried on the exhaust gas flow surface of the exhaust purification catalyst 14. Further, the surface of the basic layer 55 exhibits basicity, so the surface of the basic layer 55 is called the basic exhaust gas flow surface part 56. In FIG. 2(B), the precious metal catalyst 53 is comprised of platinum Pt, while the precious metal catalyst 54 is comprised of rhodium Rh. That is, the precious metal catalysts 53 and 54 which are carried on the catalyst carrier 52 are comprised of platinum Pt and rhodium Rh. Note that, on the catalyst carrier 52 of the exhaust purification catalyst 14, in addition to platinum Pt and rhodium Rh, palladium Pd may be further carried or, instead of rhodium Rh, palladium Pd may be carried. That is, the precious metal catalysts 53 and 54 which are carried on the catalyst carrier 52 are comprised of platinum Pt and at least one of rhodium Rh and palladium Pd. When hydrocarbons are injected from the hydrocarbon 5 feed valve 16 into the exhaust gas, the hydrocarbons are oxidized on the oxidation catalyst 13. In the present invention, at this time, the hydrocarbons are partially oxidized at the oxidation catalyst 13 and the partially oxidized hydrocarbons are used to remove the NO_X at the exhaust purification catalyst 14. In this case, if making the oxidizing strength of the oxidation catalyst 13 too strong, the hydrocarbons end up being oxidized without being partially oxidized at the oxidation catalyst 13. To make the hydrocarbons partially oxidize, it is necessary to weaken the 15 oxidizing strength of the oxidation catalyst 13. Therefore, in an embodiment of the present invention, as an oxidation catalyst 13, a catalyst with a little carried amount of the precious metal catalyst, a catalyst carrying a base metal, or a catalyst with a small volume is used. FIG. 3 schematically shows an oxidation reaction which is performed in the oxidation catalyst 13. As shown in FIG. 3, the hydrocarbons HC which are injected from the hydrocarbon feed valve 16 become radical hydrocarbons HC with a small carbon number due to the catalyst 51. Note that, at 25 this time, part of the hydrocarbons HC bond with the NO to become nitroso compounds such as shown in FIG. 3, while part of the hydrocarbons HC bond with NO₂ to form nitro compounds. These radical hydrocarbons etc. produced at the oxidation catalyst 13 are sent to the exhaust purification 30 catalyst 14. Next, referring to FIG. 4 to FIG. 6, a first NO_X
purification method discovered by the inventors will be explained. Note that, FIG. 4 shows the change in the air-fuel ratio (A/F) in of the exhaust gas flowing into the exhaust purification catalyst 14, while FIG. 5 shows the NO_X purification rate by the exhaust purification catalyst 14 with respect to the catalyst temperatures TC of the exhaust purification catalyst 14 when changing the air-fuel ratio (A/F) in of the exhaust gas flowing to the exhaust purification catalyst 14 as 40 shown in FIG. 4. Now, the inventors engaged in repeated research on NO_X purification over a long period of time and, in the process of research, learned that, as shown in FIG. 4, if intermittently lowering the air-fuel ratio (A/F) in of the exhaust gas 45 flowing into the exhaust purification catalyst 14 by later explained certain time intervals within a range of a lean air-fuel ratio, an extremely high NO_X purification rate is obtained even in a 400° C. or more high temperature region as shown in FIG. 5. Furthermore, it was learned that, at this 50 time, a large amount of a reducing intermediate containing nitrogen and hydrocarbons continues to be held or adsorbed on the surface of the basic layer 55, that is, on the basic exhaust gas flow surface part 56 of the exhaust purification catalyst 14, and this reducing intermediate plays a central 55 role in obtaining a high NO_X purification rate. Next, this will be explained with reference to FIGS. 6(A) and 6(B). Note that, these FIGS. 6(A) and 6(B) schematically show the surface part of the catalyst carrier 52 of the exhaust purification catalyst 14. These FIGS. 6(A) and 6(B) show the reaction which is presumed to occur when the air-fuel ratio (A/F) in of the exhaust gas flowing into the exhaust purification catalyst 14 is intermittently reduced within the range of a lean air-fuel ratio as shown in FIG. 4. That is, as will be understood from FIG. 4, the air-fuel 65 ratio of the exhaust gas flowing into the exhaust purification catalyst 14 is maintained lean, so the exhaust gas which 6 flows into the exhaust purification catalyst 14 becomes a state of oxygen excess. Therefore, the NO which is contained in the exhaust gas, as shown in FIG. 6(A), is oxidized on the platinum 53 and becomes NO_2 . Next, this NO_2 is further oxidized and becomes stable nitrate ions NO_3^- . On the other hand, when nitrates NO₃⁻ are produced, the nitrates NO₃⁻ are pulled back in a direction of reduction by the hydrocarbons HC which are sent on to the surface of the basic layer 55, have the oxygen disassociated, and becomes unstable NO₂*. This unstable NO₂* is strong in activity. Below, this unstable NO₂⁻ is called the active NO₂*. This active NO₂*, as shown in FIG. 6(A), reacts with the mainly radical hydrocarbons HC which are adhered on the surface of the basic layer 55 or on the rhodium Rh 54 or with the mainly radical hydrocarbons HC contained in the exhaust gas on the rhodium Rh 54, whereby a reducing intermediate is produced. This reducing intermediate is adhered or adsorbed on the surface of the basic layer 55. Note that, at this time, the first produced reducing intermediate is believed to be a nitro compound R—NO₂. If this nitro compound R—NO₂ is produced, the result becomes a nitrile compound R—CN, but this nitrile compound R—CN can only survive for an instant in this state, so immediately becomes an isocyanate compound R—NCO. This isocyanate compound R—NCO, when hydrolyzed, becomes an amine compound R—NH₂. However, in this case, what is hydrolyzed is considered to be part of the isocyanate compound R—NCO. Therefore, as shown in FIG. 6(A), the majority of the reducing intermediate which is held or adsorbed on the surface of the basic layer 55 is believed to be the isocyanate compound R—NCO and amine compound R—NH₂. On the other hand, as shown in FIG. **6**(B), the active NO_2^* reacts with the reducing intermediate R—NCO or R—NH₂ on the rhodium Rh **54** to form N_2 , CO_2 , and H_2O and consequently the NO_x is removed. That is, if no reducing intermediate R—NCO or R—NH₂ is held or adsorbed on the basic layer **55**, the NO_X is not removed. Therefore, to obtain a high NO_X purification rate, it is necessary to ensure the continuous presence of a sufficient amount of the reducing intermediate R—NCO or R—NH₂ for making the active NO_2^* N_2 , CO_2 , and H_2O on the basic layer **55**, that is, the basic exhaust gas flow surface part **26**, at all times. That is, as shown in FIGS. **6**(A) and **6**(B), to oxidize the NO on the platinum Pt 53, the air-fuel ratio (A/F) in of the exhaust gas must be lean. It is necessary to hold a sufficient amount of the reducing intermediate R—NCO or R—NH₂ for making the produced active NO₂* N₂, CO₂, and H₂O on the surface of the basic layer **55**, that is, it is necessary to provide the basic exhaust gas flow surface part **26** for holding the reducing intermediate R—NCO or R—NH₂. Therefore, as shown in FIGS. 6(A) and 6(B), to react the NO_x contained in the exhaust gas and the partially oxidized hydrocarbons and produce a reducing intermediate R—NCO or R—NH₂ containing nitrogen and hydrocarbon, precious metal catalysts 53 and 54 are carried on the exhaust gas flow surface of the exhaust purification catalyst 14, a basic exhaust gas flow surface part 26 is formed around the precious metal catalysts 53 and 54 to hold the produced reducing intermediate R—NCO or R—NH2 in the exhaust purification catalyst 14, and the NO_X is reduced by the reducing action of the reducing intermediate R-NCO or R—NH₂ held on the basic exhaust gas flow surface part **26**. Therefore, in this first NO_X purification method, hydrocarbons HC are intermittently fed from the hydrocarbon feed valve 16 by predetermined feed intervals while maintaining the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 14 lean. The predetermined feed intervals of the hydrocarbons HC are made the feed interval required for continuing to ensure the presence of the reducing intermediate R—NCO or R— NH_2 on the basic exhaust gas flow surface part 56. In this case, if the injection amount becomes too large or the injection interval becomes too short, the amount of hydrocarbons becomes excessive and a large amount of hydrocarbons HC is exhausted from the exhaust purification catalyst 14, while if the injection amount becomes too small 10 or the injection interval becomes too long, the reducing intermediate R—NCO or R—NH₂ can no longer remain on the basic exhaust gas flow surface part 56. Therefore, in this case, what is important is setting the injection amount and injection interval of hydrocarbons so that so that no excess 15 hydrocarbons HC are exhausted from the exhaust purification catalyst 14 and so that the reducing intermediate R—NCO or the R—NH₂ continues on the basic exhaust gas flow surface part 26. Incidentally, in the example shown in FIG. 4, the injection interval is made 3 seconds. Next, while referring to FIG. 7 to FIG. 11, the second NO_X purification method will be explained. In the case shown in FIG. 4, if making the feed intervals of the hydrocarbons HC longer than the above-mentioned predetermined feed intervals, the hydrocarbons HC and the reducing intermediate 25 R—NCO or R—NH₂ disappear from the surface of the basic layer 55. At this time, no pullback force in a direction, which reduces nitrate ions NO_3^- , acts on the nitrate ions NO_3^- produced on the platinum Pt 53. Therefore, at this time, the nitrate ions NO_3^- diffuse in the basic layer 55 and becomes 30 nitrates as shown in FIG. 7(A). That is, at this time, the NO_X in the exhaust gas is absorbed in the form of nitrates inside the basic layer 55. On the other hand, FIG. 7(B) shows the case where the air-fuel ratio of the exhaust gas which flows into the exhaust 35 purification catalyst 14 is made the stoichiometric air-fuel ratio or rich when the NO_x is absorbed in the form of nitrates inside of the basic layer 55. In this case, the oxygen concentration in the exhaust gas falls, so the reaction proceeds in the opposite direction $(NO_3^- \rightarrow NO_2)$ and consequently the nitrates absorbed in the basic layer 55 become nitrate ions NO_3^- one by one and, as shown in FIG. 7(B), are released from the basic layer 55 in the form of NO_2 . Next, the released NO_2 is reduced by the hydrocarbons HC and CO contained in the exhaust gas. FIG. **8** shows a second NO_X purification method utilizing the adsorption and release action of NO_X . That is, in this second NO_X purification method, as shown in FIG. **8**, when the stored NO_X amount ΣNOX which is stored in the basic layer **55** exceeds a predetermined allowable amount MAX, 50 the air-fuel ratio (A/F) in of the exhaust gas which flows into the exhaust purification catalyst **14** is temporarily made rich. If the air-fuel ratio (A/F) in of the exhaust gas is made rich, the NO_X which was absorbed at the basic layer **55** when the air-fuel ratio (A/F) in of the exhaust gas was lean, is released 55 all at once from the basic layer **55** and reduced. Due to this, the NO_X is removed. The stored NO_X amount ΣNOX is, for example, calculated from the NO_X amount which is exhausted from the engine. In an embodiment of the present invention, the exhausted 60 NO_X amount NOXA which is exhausted from the engine per unit time is stored as a function of the engine load L and engine speed N in the form of a map such as shown in FIG. 9 in advance in the ROM 32. The stored NO_X amount ΣNOX is calculated from this exhausted NO_X amount ΣNOX is calculated from this exhausted NO_X amount ΣNOX . The 65 period by which the air-fuel ratio (A/F) in of the exhaust gas is made rich is far longer than the period by which the 8 air-fuel ratio (A/F) in of the exhaust gas is lowered, as shown in FIG. 4, and the period by which the air-fuel
ratio (A/F) in of the exhaust gas is made rich is usually 1 minute or more. In the second NO_X purification method, when the air-fuel ratio (A/F) in of the exhaust gas is lean, the NO_X which is contained in the exhaust gas is absorbed in the basic layer 55. Therefore, the basic layer 55 performs the role of an absorbent for temporarily absorbing NO_x. Note that, at this time, sometimes the basic layer 55 temporarily adsorbs the NO_x. Therefore, if using term of storage as a term including both absorption and adsorption, at this time, the basic layer 55 performs the role of an NO_x storage agent for temporarily storing the NO_x. That is, if the ratio of the air and fuel (hydrocarbons) which are fed into the engine intake passage, combustion chambers 2, and exhaust passage upstream of the exhaust purification catalyst 14 is called the air-fuel ratio of the exhaust gas, in this second NO_x purification method, the exhaust purification catalyst 14 functions as an NO_x 20 storage catalyst which stores the NO_x when the air-fuel ratio of the exhaust gas is lean and releases the stored NO_x when the oxygen concentration in the exhaust gas falls. Further, in this second NO_X purification method, as shown in FIG. 10, in addition to the combustion use fuel M from the fuel injector 3, additional fuel W is injected into the combustion chamber 2 whereby the air-fuel ratio (A/F) in of the exhaust gas flowing into the exhaust purification catalyst 14 is made rich. Note that, the abscissa of FIG. 10 shows the crank angle. This additional fuel W is injected at a timing where it is burned, but does not appear as engine output, that is, slightly before ATDC90° after compression top dead center. Of course, in this case, it is also possible to make the feed amount of hydrocarbons from the hydrocarbon feed valve 16 increase so as to make the air-fuel ratio (A/F) in of the exhaust gas rich. FIG. 11 shows the NO_x purification rate when making the exhaust purification catalyst 14 function as an NO_x storage catalyst. Note that, the abscissa of the FIG. 11 shows the catalyst temperature TC of the exhaust purification catalyst 14. When making the exhaust purification catalyst 14 function as an NO_x storage catalyst, as shown in FIG. 11, when the catalyst temperature TC is 300° C. to 400° C., an extremely high NO_x purification rate is obtained, but when the catalyst temperature TC becomes a 400° C. or higher high temperature, the NO_x purification rate falls. In this way, when the catalyst temperature TC becomes 400° C. or more, the NO_x purification rate falls because if the catalyst temperature TC becomes 400° C. or more, the nitrates break down by heat and are released in the form of NO_2 from the exhaust purification catalyst **14**. That is, so long as storing NO_x in the form of nitrates, when the catalyst temperature TC is high, it is difficult to obtain a high NO_x purification rate. However, in the first NO_x purification method shown from FIG. **4** to FIGS. **6**(A) and **6**(B), as will be understood from FIGS. **6**(A) and **6**(B), nitrates are not formed or even if formed are extremely fine in amount, consequently, as shown in FIG. **5**, even when the catalyst temperature TC is high, a high NO_x purification rate is obtained. That is, the first NO_x purification method shown from FIG. 4 to FIGS. 6(A) and 6(B) can be said to be a new NO_x purification method which removes NO_X without formation of almost any nitrates when using an exhaust purification catalyst which carries a precious metal catalyst and forms a basic layer which can absorb NO_X . In actuality, when using this first NO_x purification method, the nitrates which are detected from the basic layer 53 become much smaller in amount compared with the case of using the second NO_X purification method. On the other hand, to use the first NO_X purification method to remove NO_x , it is necessary to feed a certain amount or more of hydrocarbons by a short period even when the NO_X concentration in the exhaust gas is low. Therefore, when the NO_x concentration of the exhaust gas is low, the NO_x purification efficiency deteriorates. As opposed to this, in the second NO_X purification method, when the NO_X concentration in the exhaust gas is low, the time until the stored NO_X amount ΣNOX reaches the allowable value MAX becomes longer, and thus the period for making the air-fuel ratio (A/F) in of the exhaust gas rich become longer. Accordingly, the NO_X purification efficiency does not become poor. Therefore, when the NO_x concentration in the exhaust gas is low, it can be said to be preferable to use the second NO_X purification method rather than the first NO_X purification method. That is, which of the first NO_x purification method and the second NO_X purification method should be used changes in the operating state of the engine. Therefore, in the present invention, on the exhaust purification catalyst 14, precious metal catalysts 53 and 54 are carried and a basic layer 55 is 25 formed, and the exhaust purification catalyst 14 has the property of reducing the NO_x which is contained in the exhaust gas when hydrocarbons are injected from the hydrocarbon feed valve 16 at predetermined feed intervals while maintaining the air-fuel ratio of the exhaust gas flowing into 30 the exhaust purification catalyst 14 is maintained lean and has the property of being increased in the storage amount of NO_X which is contained in exhaust gas when the feed intervals of the hydrocarbons are made longer than the predetermined feed intervals. At the time of engine opera- 35 tion, a first NO_x purification method which injects hydrocarbons from the hydrocarbon feed valve 16 at the predetermined feed intervals while maintaining the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 14 lean so as to remove the NO_X contained in the 40 exhaust gas and a second NO_X purification method which switches the air-fuel ratio of the exhaust gas which flows to the exhaust purification catalyst 14 from lean to rich by intervals longer than the predetermined feed intervals so as to remove the NO_X are selectively used in accordance with 45 the operating state of the engine. Next, referring to FIG. 12 to FIG. 15, a representative embodiment according to the present invention will be explained. FIG. 12(A) shows the hydrocarbon feed amount QE from 50 the hydrocarbon feed valve 16, while FIG. 12(B) shows the additional fuel amount W which is fed into a combustion chamber 2. The hydrocarbon feed amount QE is stored as a function of the engine load QE and engine speed N in the form of a map such as shown in FIG. 12(A) in advance in 55 the ROM 32. The additional fuel amount W is also stored as a function of the engine load QE and engine speed N in the form of a map such as shown in FIG. 12(B) in advance in the ROM 32. FIG. 13(A) shows a discharge rate NOXD of stored NO_X 60 which is discharged from the exhaust purification catalyst 14 when the air-fuel ratio (A/F) in of the exhaust gas is lean. As explained above, the NO_X which is stored in the form of nitrates is broken down by heat and discharged if the temperature TC of the exhaust purification catalyst 14 rises. 65 At this time, the NO_X discharge rate NOXD, that is, the NO_X amount NOXD which is discharged per unit time, rapidly 10 rises when the temperature TC of the exhaust purification catalyst 14 exceeds the heat breakdown start temperature of about 450° C. On the other hand, FIG. 13(B) shows the storage rate SX of the NO_X which is stored in the exhaust purification catalyst 14 when the first NO_X purification method is used to perform the purification action of NO_X . When the first NO_X purification method is used to perform the purification action of NO_X , normally NO_X is not stored in the exhaust purification catalyst 14. However, if the flow rate of the exhaust gas becomes faster, that is, if the intake air amount GA increases, the reaction time becomes shorter and the reaction can no longer be sufficiently performed, so active NO_2^* is not formed and the NO_X which is absorbed at the basic layer 55 increases. Therefore, as shown in FIG. 13(B), when the intake air amount GA becomes larger than a certain value, the NO_X storage rate SX starts to increase. In this way, even when the first NO_X purification method is used to perform an NO_X purification action, sometimes NO_X is stored in the exhaust purification catalyst 14. At this time, the amount of NO_X stored per unit time becomes the value $SX \cdot NOXA$ of the NO_X storage rate SX multiplied with the NO_X amount NOXA exhausted per unit time. In an embodiment of the present invention, $SX \cdot NOXA$ is cumulatively added to calculate the stored NO_X amount which is stored when the first NO_X purification method is used to perform the NO_X purification action. When switched from the first NO_X purification method to the second NO_X purification method, the stored NO_X amount which is calculated at the time of the first NO_X purification method is used as the basis to start to calculate the stored NO_X amount. That is, in a representative example according to the present invention, when switched from the first NO_X purification method to the second NO_X purification method, the NO_x storage amount which was calculated when the first NO_X purification method is used and the NO_X storage amount which was calculated after switching to the second NO_X purification method are totaled up. When this total value SNOX exceeds a predetermined allowable value MAX, the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 14 is made temporarily rich. In this case, if ignoring the stored NO_X amount of the time when using the first NO_X purification
method, the timing at which the air-fuel ratio (A/F) in of the exhaust gas is made rich when switched to the second NO_X purification method becomes slower and consequently part of the NO_X is exhausted into the atmosphere without being stored. However in an embodiment of the present invention, the NO_X storage amount of the time when the first NO_X purification method is used is taken into consideration. Therefore, the above such problem does not arise. On the other hand, when switched from the second NO_X purification method to the first NO_X purification method, if stored NO_X remains in the exhaust purification catalyst **14**, the stored NO_X is discharged from the NO_X purification catalyst **14** when the temperature TC of the exhaust purification catalyst **14** is caused to rise due to the feed of hydrocarbons. When an NO_X purification action is performed by the first NO_X purification method, no reducing action is performed on the thus discharged NO_X , consequently the NO_X is exhausted into the atmosphere. However, if making the air-fuel ratio ($\overline{A/F}$) in of the exhaust gas rich, it is possible to reduce the stored NO_X which remained in the exhaust purification catalyst 14 and consequently possible to block the NO_X from being exhausted into the atmosphere. Therefore, in an embodiment of the present invention, as shown in FIG. 14, when switched from the second NO_X purification method to the first NO_X purification method, the air-fuel ratio of the exhaust gas which flows into the exhaust purification catalyst 14 is temporarily made rich to release and reduce the NO_X which was stored in the exhaust purification catalyst 514. In this case, in the embodiment shown in FIG. 14, right before being switched from the second NO_X purification method to the first NO_X purification method, additional fuel W is fed into the combustion chamber 2 whereby the air-fuel 10 ratio of the exhaust gas which flows into the exhaust purification catalyst 14 is made rich. Note that, FIG. 14 shows the change of the air-fuel ratio (A/F) in of the exhaust gas which flows into the exhaust purification catalyst 14 and the stored NO_X amount ΣNOX which is stored in the exhaust purification catalyst 14. As will be understood from FIG. 14, when the first NO_X purification method is started, the stored NO_X amount ΣNOX becomes zero and consequently NO_X is kept from being exhausted into the atmosphere. On the other hand, the NO_X purification action by the first NO_X purification method is not performed so long as the oxidation catalyst 13 is not activated. Therefore, in an embodiment of the present invention, the first NO_X purification method is used only when the temperature TB of the oxidation catalyst 13 becomes the activation temperature TB_0 or more. When the temperature TB_0 of the oxidation catalyst TB_0 is lower than the activation temperature TB_0 , use of the first TS_0 purification method is prohibited. At this time, that is, when the temperature TB_0 of the oxidation catalyst TS_0 is lower than the activation temperature TS_0 , the TS_0 second TS_0 purification method is used. Note that, in a representative embodiment of the present invention, when the temperature TB of the oxidation catalyst ${\bf 13}$ is the activation temperature ${\rm TB}_0$ or more, either of the first ${\rm NO}_X$ purification method or the second ${\rm NO}_X$ purification ${\bf 35}$ method is used. In this case, when using the first ${\rm NO}_X$ purification method would result in a higher ${\rm NO}_X$ purification efficiency compared with using the second ${\rm NO}_X$ purification method, the first ${\rm NO}_X$ purification method is used, while when using the second ${\rm NO}_X$ purification method 40 would result in a higher ${\rm NO}_X$ purification efficiency compared with using the first ${\rm NO}_X$ purification method, the second ${\rm NO}_X$ purification method is used. FIG. 15 shows the NO_X purification control routine for executing the representative embodiment of the present 45 invention. This routine is executed by interruption every predetermined time interval. Referring to FIG. 15, first, at step 60, the NO_X amount NOXA exhaust per unit time is calculated from the map shown in FIG. 9. Next, the routine proceeds to an NO_X 50 purification method determining part A for determining whether to use the first NO_X purification method or use the second NO_X purification method. With this NO_X purification method determination part A, first, at step 61, it is judged if the temperature TB of the oxidation catalyst 13 is the 55 activation temperature TB₀ or more. When TB<TB₀, it is judged that the second NO_X purification method should be used. At this time, the routine proceeds to step 64. As opposed to this, when $TB \ge TB_0$, the routine proceeds to step 62 where the NO_X purification efficiency F_1 when 60 using the first NO_X purification method and the NO_X purification efficiency F_2 when using the second NO_X purification method are calculated. The NO_X purification efficiencies F_1 and F_2 express the amounts of consumption of fuel or hydrocarbons per unit time required for obtaining a unit 65 NO_X purification rate. In this case, the NO_X purification efficiency F_1 is calculated from the hydrocarbon feed 12 amount QE and hydrocarbon injection interval shown in FIG. 12A and the NO_X purification rate shown in FIG. 5, while the NO_X purification efficiency F_2 is calculated from the additional fuel amount W shown in FIG. 12B, the interval between timings where the rich air-fuel ratio is set in FIG. 8, and the NO_X purification rate shown in FIG. 11. Next, at step 63, it is judged if the NO_X purification efficiency F_1 is higher than the NO_X purification efficiency F_2 . When $F_1 \ge F_2$, it is judged that the first NO_X purification method should be used. At this time, the routine proceeds to step 68. As opposed to this, when $F_1 < F_2$, it is judged that the second NO_X purification method should be used, and the routine proceeds to step 64. Next, the second NO_X purification method which is performed from step **64** to step **67** will be explained. First, at step **64**, the exhausted NO_X amount NOXA shown in FIG. **9** is added to Σ NOX to calculate the stored NO_X amount Σ NOX. Next, at step **65**, it is judged if the stored NO_X amount Σ NOX exceeds the allowable value MAX. When Σ NOX>MAX, the routine proceeds to step **66** where the additional fuel amount W is calculated from the map shown in FIG. **12**B, then the additional fuel injection action is performed. Next, at step **67**, Σ NOX is cleared. Next, the first NO_X purification method which is performed from step **68** to step **74** will be explained. First, at step **68**, it is judged if stored NO_X processing is being performed for processing the stored NO_X remaining inside the exhaust purification catalyst **14**. When stored NO_X processing is not being performed, the routine proceeds to step **69** where it is judged if a decision to switch from the second NO_X purification method to the first NO_X purification method has now been made. If a decision to switch from the second NO_X purification method to the first NO_X purification method has now been made, the routine proceeds to step **70** where it is judged if the stored NO_X amount NO_X is smaller than a predetermined small value MIN. When Σ NOX>MIN, the routine proceeds to step 71 where stored NO_X processing is performed. In this embodiment, as shown in FIG. 14, right before being switched from the second NO_X purification method to the first NO_X purification method, the air-fuel ratio (A/F) in of the exhaust gas is temporarily made rich. Next, at step 72, Σ NOX is cleared. Note that, when the stored NO_X processing has started, the routine jumps from step 68 to step 71 until the stored NO_X processing is completed. On the other hand, when it is judged at step **69** that a decision to switch from the second NO_X purification method to the first NO_X purification method has not now been made, the routine proceeds to step **73**. Further, when it is judged at step **70** that $\Sigma NOX < MIN$, that is, even when it is judged that almost no NO_X is stored, the routine proceeds to step **73**. At step **73**, the hydrocarbon feed amount QE is calculated from the map such as shown in FIG. **12**(A), so hydrocarbon injection processing is performed. Next, at step **74**, the following formula is used as the basis to calculate the NO_X amount ΣNOX which is stored in the exhaust purification catalyst **14** during an NO_X purification action by the first NO_X purification method. # $\Sigma \text{NOX} {\leftarrow} \Sigma \text{NOX} {+} \text{SX} {\cdot} \text{NOX} A {-} \text{NOX} D$ where, SX·NOXA, as explained above, is the NO_X amount which is stored per unit time and NOXD is the discharge rate shown in FIG. **13**A. When switched from the first NO_X purification method to the second NO_X purification method, at step **64**, NOXA is added to the Σ NOX calculated at step **74**. FIG. 16 shows another embodiment. In this embodiment, the engine operating region where the NO_X purification efficiency F_2 becomes higher than the NO_X purification efficiency F_1 is set in advance as shown by the hatching in FIG. 16(A), for example, as a function of the engine load L 5 and engine speed N. When the oxidation catalyst 13 is activated, the NO_X purification method is determined in accordance with FIG. 16(A). FIG. 16(B) shows another embodiment of the NO_x purification method determining part A of FIG. 15. Referring to FIG. 16(B), at step 61, when the temperature TB of the oxidation catalyst 13 is lower than
the activation temperature TB_0 , it is judged that the second NO_X purification method should be used, then the routine proceeds to step 64 of FIG. 15. As opposed to this, when it is judged at step 61 that TB \geq TB₀, the routine proceeds to step 61a where it is judged if the operating state of the engine is a region shown by the hatching in FIG. 16(A) where the second NO_X purification method should be used. When the operating state of the engine is a region where the second NO_X 20 purification method should be used, the routine proceeds to step 64 of FIG. 15. As opposed to this, when it is judged that the operating state of the engine is not a region where the second NO_X purification method should be used, the routine proceeds to step 68 of FIG. 15. FIG. 17 shows still another embodiment of the NO_X purification method determining part A of FIG. 15. That is, the NO_X purification rate when using the first NO_X purification method, as shown in FIG. 5, is rapidly lowered when the temperature TC of the exhaust purification catalyst 14 30 becomes the limit temperature TC₀ or less. As opposed to this, as shown in FIG. 11, the NO_X purification rate when using the second NO_X purification method falls relatively slowly when the temperature TC of the exhaust purification catalyst 14 falls. Therefore, in this embodiment, when the 35 temperature TC of the exhaust purification catalyst 14 is higher than the limit temperature TC_0 , the first NO_X purification method is used, while when the temperature TC of the exhaust purification catalyst 14 is lower than the limit temperature TC₀, the second NO_X purification method is 40 used. That is, referring to FIG. 17, at step 61, when the temperature TB of the oxidation catalyst 13 is lower than the activation temperature TB_0 , it is judged that the second NO_X purification method should be used then the routine proceeds 45 to step 64 of FIG. 15. As opposed to this, when it is judged at step 61 that $TB \ge TB_0$, the routine proceeds to step 61a where it is judged if the temperature TC of the exhaust purification catalyst 14 is higher than the limit temperature TC_0 . When $TC < T_0$, the routine proceeds to step 64 of FIG. 50 15. As opposed to this, when $TC \ge T_0$, it is judged that the first NO_X purification method should be used then the routine proceeds to step 68 of FIG. 15. FIG. 18 shows still another embodiment of the NO_X purification method determining part A of FIG. 15. That is, 55 the first NO_X purification method can give a high NO_X purification rate as compared with the second NO_X purification method when the NO_X amount to be reduced is large, that is, when the NO_X concentration in the exhaust gas is high. Therefore, in this embodiment, it is judged whether to use the first NO_X purification method or to use the second NO_X purification method by whether the NO_X concentration D in the exhaust gas exceeds a set value D_0 . That is, referring to FIG. 18, at step 61, when the temperature TB of the oxidation catalyst 13 is lower than the activation temperature TB_0 , it is judged that the second NO_X purification method should be used, then the routine pro- 14 ceeds to step **64** of FIG. **15**. As opposed to this, when it is judged at step **61** that TB \geq TB $_0$, the routine proceeds to step **61**a where it is judged if the temperature TC of the exhaust purification catalyst **14** is higher than the limit temperature TC $_0$. When TC \leq T $_0$, the routine proceeds to step **64** of FIG. **15**. As opposed to this, when TC \geq T $_0$, the routine proceeds to step **61**b where it is judged if the NO $_X$ concentration D in the exhaust gas which is detected by for example, the NO $_X$ concentration sensor is higher than the set value D $_0$. When D \leq D $_0$, the routine proceeds to step **64** of FIG. **15**. As opposed to this, when D \geq D $_0$, it is judged that the first NO $_X$ purification method should be used, then the routine proceeds to step **68** of FIG. **15**. FIG. 19 shows another embodiment of the stored NO_X processing which is performed at step 71 of FIG. 15. In this embodiment, right after being switched from the second NO_X purification method to the first NO_X purification method as well, the air-fuel ratio (A/F) in of the exhaust gas flowing into the exhaust purification catalyst 14 is made rich. At this time, the amount of hydrocarbons which is fed from the hydrocarbon feed valve 16 is increased so that the air-fuel ratio (A/F) in of the exhaust gas is made rich. That is, when a decision has been made to switch from the second NO_X purification method to the first NO_X purification method, if the stored NO_X amount ΣNOX is large, if just injecting additional fuel to the inside of the combustion chamber 2 so as to make air-fuel ratio (A/F) in of the exhaust gas rich just once, sometimes it is not possible to release the total stored NO_X for reduction. In such a case, as shown in FIG. 19, when the NO_X purification action by the first NO_X purification method is started, by increasing the feed amount of hydrocarbons, the air-fuel ratio (A/F) in of the exhaust gas is made rich whereby the total stored NO_X is released and reduced. On the other hand, if injecting additional fuel into the combustion chamber 2, the temperature inside the combustion chamber 2 rises. Therefore, at the time of a high load operation where the combustion temperature becomes higher, sometimes the air-fuel ratio (A/F) in of the exhaust gas cannot be made rich by injecting the additional fuel into the combustion chamber 2. In such a case, the air-fuel ratio (A/F) in of the exhaust gas is made rich by stopping the injection of the additional fuel and increasing the feed amount of hydrocarbons. FIG. 20 shows still another embodiment of the stored NO_X processing which is performed at step 71 of FIG. 15. In this embodiment, after being switched from the second NO_X purification method to the first NO_X purification method, the NO_X purification action is started by the first NO_X purification method, then the air-fuel ratio (A/F) in of the exhaust gas flowing into the exhaust purification catalyst 14 is made rich. In this embodiment, when the stored NO_X is discharged from the exhaust purification catalyst 14, this discharged NO_X is reduced by feeding additional fuel to the combustion chamber 2 or increasing the feed amount of hydrocarbons to make the air-fuel ratio (A/F) in of the exhaust gas rich. On the other hand, if the sulfur which is contained in the exhaust gas sticks to the surface of the precious metal, that is, if the precious metal is poisoned by sulfur, active NO₂* becomes harder to produce. Therefore, it is preferable to increase the feed amount of hydrocarbons QE as the sulfur poisoning amount of the precious metal is increased so that the amount of production of active NO₂* does not fall even if the precious metal is poisoned by sulfur. In the embodiment shown in FIG. 21, the increase coefficient for the hydrocarbon feed amount QE is increased along with the increase in the sulfur poisoning amount so that the amount of production of active NO₂* does not fall even if the sulfur poisoning amount is increased. FIG. 22 shows the case of forming the hydrocarbon partial oxidation catalyst 13 and the exhaust purification catalyst 14 shown in FIG. 1 by a single catalyst. This catalyst is for 5 example provided with a large number of exhaust gas channels extending in the direction of flow of the exhaust gas. FIG. 22 shows an enlarged cross-sectional view of the surface part of the inner circumferential wall 80 of an exhaust gas channel of the catalyst. As shown in FIG. 22, on the surface of the inner circumferential wall 80 of the exhaust gas channel, a bottom coat layer 81 is formed. On this bottom coat layer 81, a top coat layer 82 is formed. In the example shown in FIG. 22, both the coat layers 81 and 82 are comprised of powder aggregates. FIG. 22 shows 15 enlarged views of the powder forming the coat layers 81 and 82. From the enlarged views of the powder, it is learned that the top coat layer 82 is comprised of the hydrocarbon partial oxidation catalyst shown in FIG. 2(A), for example, an oxidation catalyst, while the bottom coat layer 81 is com- 20 prised of the exhaust purification catalyst shown in FIG. When the catalyst shown in FIG. 22 is used, as shown in FIG. 22, the hydrocarbons HC which are contained in the exhaust gas diffuse inside the top coat layer 82 and are 25 partially oxidized. The partially oxidized hydrocarbons diffuse inside the bottom coat layer 81. That is, in the example shown in FIG. 22 as well, in the same way as the example shown in FIG. 1, the hydrocarbon partial oxidation catalyst and the exhaust purification catalyst are arranged so that the 30 hydrocarbons which were partially oxidized at the hydrocarbon partial oxidation catalyst flow to the exhaust purification catalyst. On the other hand, in the catalyst shown in FIG. 22, when the first NO_X purification method is used, the NO_x which is contained in the exhaust gas diffuses to the 35 inside of the bottom coat layer 81 and becomes active NO_2^* . At this time, at the bottom coat layer 81, the reducing intermediate R-NCO or R-NH2 is produced from the active NO2* and the partially oxidized hydrocarbons. Furthermore, the active NO₂* reacts with the reducing inter- 40 mediate R—HCO or R—NH₂ to become N₂, CO₂, and H₂O. On the other hand, as shown in FIG. 2(B), on the catalyst carrier 52 of the exhaust purification catalyst 14, precious metals 53 and 54 are carried. Therefore, inside of the exhaust purification catalyst 14 as well, it is possible to reform the 45 hydrocarbons to radical hydrocarbons HC with a small carbon number. In this case, if the hydrocarbons can be sufficiently reformed inside the exhaust purification
catalyst 14, that is, if the hydrocarbons can be sufficiently partially oxidized inside of the exhaust purification catalyst 14, it is 50 not necessary to arrange the oxidation catalyst 13 as shown in FIG. 1 upstream of the exhaust purification catalyst 14. Therefore, in an embodiment according to the present invention, no oxidation catalyst 13 is attached inside of the engine exhaust passage. Therefore, in this embodiment, the hydro- 55 carbons which are injected from the hydrocarbon feed valve 16 are directly fed to the exhaust purification catalyst 14. In this embodiment, the hydrocarbons which are injected from the hydrocarbon feed valve 16 are partially oxidized inside of the exhaust purification catalyst 14. Furthermore, 60 inside of the exhaust purification catalyst 14, active NO_2^* is produced from the NO_X which is contained in the exhaust gas. Inside of the exhaust purification catalyst 14, the reducing intermediate R—NCO and R— NH_2 is produced from these active NO_2^* and partially oxidized hydrocarbons. Furthermore, the active NO_2^* reacts with the reducing intermediate R—NCO or R— NH_2 to become N_2 , CO_2 , and 16 $\rm H_2O$. That is, in this embodiment, the exhaust purification catalyst 14 for reacting the hydrocarbons injected from the hydrocarbon feed valve 16 and partially oxidized and the $\rm NO_X$ contained in the exhaust gas is arranged inside of the engine exhaust passage downstream of the hydrocarbon feed valve 16. #### REFERENCE SIGNS LIST 10 4 . . . intake manifold 5 . . . exhaust manifold 7 . . . exhaust turbocharger 12 . . . exhaust pipe 13 . . . oxidation catalyst 14 . . . exhaust purification catalyst 16 . . . hydrocarbon feed valve What is claimed is: 1. A method of purifying NO_X contained in exhaust gas, the method comprising a first NO_X purification method and a second NO_X purification method, wherein the first NO_X purification method and the second NO_X purification method comprise: supplying exhaust gas containing NO_X to an exhaust gas passage; injecting hydrocarbons in the exhaust gas passage at predetermined feed intervals to form a mixture with the exhaust gas containing NO_X ; feeding the exhaust gas or the mixture to an exhaust purification catalyst; and reducing the NO_X contained in the exhaust gas, wherein a precious metal catalyst is carried on the exhaust purification catalyst, - a basic layer is formed on the exhaust purification catalyst, - a hydrocarbon feed valve injects the hydrocarbons in the exhaust gas passage, wherein - in the first method, the injected hydrocarbons are partially oxidized, and an air-fuel ratio of the exhaust gas and an air-fuel ratio of the mixture flowing into the exhaust purification catalyst is lean, thereby, the exhaust purification catalyst chemically reduces NO_X contained in the exhaust gas without storing nitrates, or with storing a fine amount of nitrates, in the basic layer formed on the exhaust purification catalyst, and the first method further comprises: reacting the NO_X and the partially oxidized hydrocarbons contained in the mixture at the precious metal catalyst to produce a reducing intermediate containing nitrogen and hydrocarbons; holding the produced reducing intermediate on the basic layer; and chemically reducing the $\mathrm{NO}_{\mathcal{X}}$ contained in the exhaust gas by a reducing action of the reducing intermediate held on the basic layer, thereby chemically reducing the $\mathrm{NO}_{\mathcal{X}}$ contained in the exhaust gas without storing nitrates, or with storing a fine amount of nitrates, in the basic layer formed on the exhaust purification catalyst, and in the second method, the injection of the hydrocarbons from the hydrocarbon feed valve occurs at intervals longer than the predetermined feed intervals in the first method, wherein when the feed intervals of the hydrocarbons are longer than the predetermined feed intervals of the first method, the exhaust purification catalyst - increases in a storage amount of NO_X , thereby physically reducing the NO_X contained in the exhaust gas, and - when the feed intervals of the hydrocarbons are longer than the predetermined feed intervals of the first method, and when an air-fuel ratio of the mixture is switched from lean to rich, NO_X is chemically reduced, and - at the time of engine operation, the first NO_X purification method and the second NO_X purification method are selectively performed in accordance with an operating state of an engine. - 2. The method of claim 1, wherein inside of the engine exhaust passage and downstream of the hydrocarbon feed valve - a hydrocarbon partial oxidation catalyst partially oxidizes the hydrocarbons in the mixture, and - the exhaust purification catalyst and the hydrocarbon partial oxidation catalyst are arranged so that the hydrocarbons that are partially oxidized at the hydrocarbon partial oxidation catalyst flow into the exhaust purification catalyst. - 3. The method of claim 2, wherein the hydrocarbon partial oxidation catalyst is comprised of an oxidation catalyst 25 which is arranged inside of the engine exhaust passage upstream of the exhaust purification catalyst. - **4.** The method of claim **2**, wherein a top coat layer comprised of the hydrocarbon partial oxidation catalyst is formed on a bottom coat layer comprised of the exhaust 30 purification catalyst. - 5. The method of claim 2, wherein in the first NO_X purification method, - the predetermined feed intervals of the hydrocarbons are the feed intervals necessary for a continued presence of 35 the reducing intermediate on a basic exhaust gas flow surface part. - **6**. The method of claim **1**, wherein in the first NO_X purification method, - the predetermined feed intervals of the hydrocarbons are 40 the feed intervals necessary for a continued presence of the reducing intermediate on a basic exhaust gas flow surface part. - 7. The method of claim 1, wherein in the second NO_X purification method, when the air-fuel ratio of the exhaust 45 gas flowing into the exhaust purification catalyst is lean, NO_X in the exhaust gas is absorbed in the basic layer and, when the air-fuel ratio of the mixture flowing into the exhaust purification catalyst becomes rich, the absorbed NO_X is released from the basic layer and chemically 50 reduced. - 8. The method of claim 1, wherein the precious metal catalyst is comprised of platinum Pt and at least one of rhodium Rh and palladium Pd. - 9. The method of claim 1, wherein the basic layer includes 55 an alkali metal, alkali earth metal, rare earth, or metal able to donate electrons to NO_X . - 10. The method of claim 1, wherein the first NO_X purification method is only performed when a temperature of an oxidation catalyst becomes an activation temperature or 60 more and wherein performance of the first NO_X purification method is prohibited when the temperature of the oxidation catalyst is lower than the activation temperature. - 11. The method of claim 10, wherein either the first NO_X purification method or the second NO_X purification method 65 is performed when a temperature of the oxidation catalyst is the activation temperature or more. 18 - 12. The method of claim 11, the method further comprising: - comparing a NO_X purification efficiency of the first and second method, and - if performing the first NO_X purification method would result in a higher NO_X purification efficiency compared to performing the second NO_X purification method, the first NO_X purification method is performed, or - if performing the second NO_X purification method would result in a higher NO_X purification efficiency compared to performing the first NO_X purification method, the second NO_X purification method is performed. - 13. The method of claim 11, wherein when the NO_X purification rate starts to be lowered when a temperature of the exhaust purification catalyst becomes a limit temperature or less, when the temperature of the exhaust purification catalyst is higher than the limit temperature, the first NO_X purification method is performed, and when the temperature of the exhaust purification catalyst is lower than the limit temperature, the second NO_X purification method is performed. - 14. The method of claim 10, wherein the second NO_X purification method is performed when a temperature of the oxidation catalyst is lower than the activation temperature. - 15. The method of claim 1, wherein when switched from the second NO_X purification method to the first NO_X purification method, the air-fuel ratio of the mixture flowing into the exhaust purification catalyst is temporarily made rich to release and chemically reduce the NO_X that is stored in the exhaust purification catalyst. - 16. The method claim 15, wherein directly before being switched from the second NO_X purification method to the first NO_X purification method, the air-fuel ratio of the mixture flowing into the exhaust purification catalyst is made rich. - 17. The method of claim 16, wherein directly after being switched from the second NO_X purification method to the first NO_X purification method, the air-fuel ratio of the mixture flowing into the exhaust purification catalyst is made rich. - 18. The method of claim 15, wherein after being switched from the second NO_X purification method to the first NO_X purification method, the NO_X purification action is started by the first NO_X purification method, then the air-fuel ratio of the mixture flowing into the exhaust purification catalyst is made rich. - **19**. The method of claim **1**, wherein the first and second method further comprise: - calculating the amount of NO_X stored in the exhaust purification catalyst, wherein - when the calculated amount of NO_X stored in the exhaust purification catalyst exceeds a
predetermined allowable value, the air-fuel ratio of the mixture flowing into the exhaust purification catalyst is temporarily made rich, and - when switched from the first NO_X purification method to the second NO_X purification method, the NO_X storage amount calculated when the first NO_X purification method is performed and the NO_X storage amount calculated after switching to the second NO_X purification method are totaled up and, when a total value exceeds a predetermined allowable value, the air-fuel ratio of the mixture flowing into the exhaust purification catalyst is made temporarily rich. * * * * *